正在加载图片...
·1420· 北京科技大学学报 第34卷 0.02mm;窄面最大变形量产生于弯月面下100mm 态沸腾降低冷却效率及热应力集中和产生水垢. 处和铜镍分界位置附近,最大变形也近0.02mm.实 图6表明水槽加深并未大幅降低铜板变形量,因此 际浇铸中,尽管深的冷却水槽会携带走更多热量,却 目前水槽设计合理. 使水槽底部更加靠近铜板热面,极易引起冷却水核 900 900 (a) 800H 800 70 ---.16mm ---…16mm 一18mm —18mm 过600 -…20mm 图600 …20mm 500t 400 40 咀300 100 100 060.50.i00.150200,250.300.350.40 00.050.100.150.200.250.300.350.40 铜板法向位移mm 铜板法向句位移mm 图6结品器冷却水槽深度对热面中心线法向位移的影响.()宽面:(b)窄面 Fig.6 Normal displacements at the hot surface centricity with different water slot depths:(a)wide face:(b)narrow face 3结论 mechanical behavior of copper molds during thin-slab casting (II):mold crack formation.Metall Mater Trans B,2002,33 宽面热面变形较窄面均匀,整体向铸坯侧膨胀, (3):437 其中远角部变形大,并受冷却水槽阻隔形成等变形 B]Meng X N,Zhu M Y.Mechanism of explaining liquid friction and 环区域:最大变形0.34mm出现在弯月面下100mm flux consumption during nonsinusoidal oscillation in slab continu- ous casting mould.Can Metall O,2011,50(1):45 处紧固螺栓位置,且沿拉坯方向逐渐降低,而冷却水 Meng X,Zhu M.Optimisation of non-sinusoidal oscillation param- 槽位置相对较低变形又使等变形曲线呈波浪状,至 eters for slab continuous casting mould with high casting speed. 结晶器出口附近趋于平滑:冷却水槽末端变形有所 Ironmaking Steelmaking,2009,36(4):300 回升,约0.15mm,随后下降至出口处0.08mm左 5] Meng Y,Thomas B G.Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel.IS/ 右;热面近角部至角部变形逐渐减小,至与窄面接触 mt,2006,46(5):660 处产生微小负变形,约为-0.008mm. [6 Marcandalli A,Mapelli C,Nicodemi W.A thermomechanical 窄面也膨胀向铸坯侧,仅在结晶器出口角部形 model for simulation of carbon steel solidification in mould in con- 成极小负变形区,最大值可达-0.10mm;窄面最大 tinuous casting.Ironmaking Steelmaking,2003,30(4):265 正变形出现在中部弯月面位置,约为0.40mm,高于 Li C,Thomas B G.Thermomechanical finite-element model of 宽面最大值,沿拉坯方向逐渐减小,至冷却水槽末端 shell behavior in continuous casting of steel.Metall Mater Trans B,2004,35(6):1151 有所回升,之后继续降低:弯月面区、铜镍分界区和 B] Thomas B G,Langeneckert M,Castella L,et al.Optimisation of 冷却水槽末端区分别形成封闭等变形曲线,与受宽 narrow face water slot design for Siderar slab casting mould.fron- 面约束变形叠加使窄面中部变形呈不规则状,而近 making Steelmaking,2003,30(3):235 角部至角部等应力曲线则渐趋平缓. Chow C,Samarasekera I V,Walker B N,et al.High speed con- 随铜板加厚,热面中心线变形增大,铜板越厚增 tinuous casting of steel billets part 2:mould heat transfer and mould design.Ironmaking Steelmaking,2002,29(1):61 幅越大,铜板加厚5mm,最大中心线变形增加 [10]Park J K,Thomas B G,Samarasekera I V,et al.Thermal and 0.05mm;镍层厚度和冷却水槽深度对中心线变形 mechanical behavior of copper molds during thin-slab casting 影响相对较小,镍层厚度变化1mm仅在窄面引起最 (I):plant trial and mathematical modeling.Metall Mater Trans 大0.01mm的下降,冷却水槽加深2mm,最大中心 B,2002,33(3):425 线变形减少0.02mm. [11]Meng X.Zhu M.Thermal behavior of hot copper plates for slab continuous casting mold with high casting speed.IS//Int,2009, 49(9):1356 参考文献 [12]Zhao Z G,Ye J D,Wang Y Q,et al.Mechanics of Materials. [Thomas B G.Modeling of the continuous casting of steel:past, Tianjin:Tianjin University Press,2001 present,and future.Metall Mater Trans B,2002,33(6):795 (赵志岗,叶金铎,王燕群,等.材料力学.天津:天津大学 Park J K,Thomas B G,Samarasekera I V,et al.Thermal and 出版社,2001)北 京 科 技 大 学 学 报 第 34 卷 0. 02 mm; 窄面最大变形量产生于弯月面下 100 mm 处和铜镍分界位置附近,最大变形也近0. 02 mm. 实 际浇铸中,尽管深的冷却水槽会携带走更多热量,却 使水槽底部更加靠近铜板热面,极易引起冷却水核 态沸腾降低冷却效率及热应力集中和产生水垢. 图 6表明水槽加深并未大幅降低铜板变形量,因此 目前水槽设计合理. 图 6 结晶器冷却水槽深度对热面中心线法向位移的影响. ( a) 宽面; ( b) 窄面 Fig. 6 Normal displacements at the hot surface centricity with different water slot depths: ( a) wide face; ( b) narrow face 3 结论 宽面热面变形较窄面均匀,整体向铸坯侧膨胀, 其中远角部变形大,并受冷却水槽阻隔形成等变形 环区域; 最大变形 0. 34 mm 出现在弯月面下 100 mm 处紧固螺栓位置,且沿拉坯方向逐渐降低,而冷却水 槽位置相对较低变形又使等变形曲线呈波浪状,至 结晶器出口附近趋于平滑; 冷却水槽末端变形有所 回升,约 0. 15 mm,随后下降至出口处 0. 08 mm 左 右; 热面近角部至角部变形逐渐减小,至与窄面接触 处产生微小负变形,约为 - 0. 008 mm. 窄面也膨胀向铸坯侧,仅在结晶器出口角部形 成极小负变形区,最大值可达 - 0. 10 mm; 窄面最大 正变形出现在中部弯月面位置,约为 0. 40 mm,高于 宽面最大值,沿拉坯方向逐渐减小,至冷却水槽末端 有所回升,之后继续降低; 弯月面区、铜镍分界区和 冷却水槽末端区分别形成封闭等变形曲线,与受宽 面约束变形叠加使窄面中部变形呈不规则状,而近 角部至角部等应力曲线则渐趋平缓. 随铜板加厚,热面中心线变形增大,铜板越厚增 幅越 大,铜 板 加 厚 5 mm,最大中心线变形增加 0. 05 mm; 镍层厚度和冷却水槽深度对中心线变形 影响相对较小,镍层厚度变化 1 mm 仅在窄面引起最 大 0. 01 mm 的下降,冷却水槽加深 2 mm,最大中心 线变形减少 0. 02 mm. 参 考 文 献 [1] Thomas B G. Modeling of the continuous casting of steel: past, present,and future. Metall Mater Trans B,2002,33( 6) : 795 [2] Park J K,Thomas B G,Samarasekera I V,et al. Thermal and mechanical behavior of copper molds during thin-slab casting ( II) : mold crack formation. Metall Mater Trans B,2002,33 ( 3) : 437 [3] Meng X N,Zhu M Y. Mechanism of explaining liquid friction and flux consumption during non-sinusoidal oscillation in slab continu￾ous casting mould. Can Metall Q,2011,50( 1) : 45 [4] Meng X,Zhu M. Optimisation of non-sinusoidal oscillation param￾eters for slab continuous casting mould with high casting speed. Ironmaking Steelmaking,2009,36( 4) : 300 [5] Meng Y,Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int,2006,46( 5) : 660 [6] Marcandalli A,Mapelli C,Nicodemi W. A thermomechanical model for simulation of carbon steel solidification in mould in con￾tinuous casting. Ironmaking Steelmaking,2003,30( 4) : 265 [7] Li C,Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B,2004,35( 6) : 1151 [8] Thomas B G,Langeneckert M,Castellá L,et al. Optimisation of narrow face water slot design for Siderar slab casting mould. Iron￾making Steelmaking,2003,30( 3) : 235 [9] Chow C,Samarasekera I V,Walker B N,et al. High speed con￾tinuous casting of steel billets part 2: mould heat transfer and mould design. Ironmaking Steelmaking,2002,29( 1) : 61 [10] Park J K,Thomas B G,Samarasekera I V,et al. Thermal and mechanical behavior of copper molds during thin-slab casting ( I) : plant trial and mathematical modeling. Metall Mater Trans B,2002,33( 3) : 425 [11] Meng X,Zhu M. Thermal behavior of hot copper plates for slab continuous casting mold with high casting speed. ISIJ Int,2009, 49( 9) : 1356 [12] Zhao Z G,Ye J D,Wang Y Q,et al. Mechanics of Materials. Tianjin: Tianjin University Press,2001 ( 赵志岗,叶金铎,王燕群,等. 材料力学. 天津: 天津大学 出版社,2001) ·1420·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有