1446 C-M.Song et aL Signal Processing:Image Communication 28 (2013)1435-1447 and AQ-2BT,and obviously cheaper than FS with eight-bit [6]T.Koga,K.Linuma,A.Hirano,Y.Lijima,T.Ishiguro,Motion- depth pixels. compensated interframe coding for video conferencing.in:Proceed- ings of the IEEE NTC'S1.voL 4.New Orleans.LA,1981.pp.G5.3.1- C525 [7]S.Zhu.K.K.Ma.A new diamond search algorithm for fast block- 7.Conclusion matching motion estimation,IEEE Trans.Image Process.9(2)(2000) 287-290. This study addresses a novel bit transform for low bit- [8]C.H.Cheung.LM.Po.Novel cross-diamond-hexagonal search algo- resolution motion estimation by exploiting the quantiza- rithms for fast block motion estimation,IEEE Trans.Multimedia 7(1) (2005)16-22. tion theory and fuzzy membership function.We formulate [9]C.Zhu.X.Lin,L-P.Chau,Hexagon-based search pattern for fast block the bit-depth downsampling of eight bit-depth pixels into motion estimation,IEEE Trans.Circuits Syst.Video Technol.12 (5) optimum quantization in terms of mean squared error. (2002)349-355. [10]Y.Ismail,J.B.McNeely.M.Shaaban,H.Mahmoud,M.A.Bayoumi,Fast Subsequently,we present an approximate solution using motion estimation system using dynamic models for H.264/AVC histogram equalization and uniform quantization,which is video coding.IEEE Trans.Circuits Syst Video Technol.22 (1)(2012) refined by a membership function with the variance of 2842. inter-frame noises as a variable.The membership function [11]A.Saha.J.Mukherjee,S.Sural.A neighborhood elimination approach for block matching in motion estimation,Signal Process.:Image is able to reduce the interval partitioning errors due to Commun.26(8-9)(2011)438-454. camera capability and coding distortions,so as to improve [12]C.-C.Lou,S.-W.Lee,C.-CJ.Kuo.Adaptive motion search range bit transform accuracy and motion estimation efficiency. prediction for video encoding.IEEE Trans.Circuits Syst.Video TechnoL.20(12)(2010)1903-1908. Extensive experimental results verify the effectiveness of [13]W.Lin,K.Panusopone,D.M.Baylon,M.-T.Sun,Z.Chen,H.Li. our bit transform and its application in low bit-resolution A fast sub-pixel motion estimation algorithm for H.264/AVC motion estimation. video coding.IEEE Trans.Circuits Syst.Video TechnoL 21(2)(2011) 237-243. Note that we employ full search strategy in Algorithm 3 [14]C.K.Cheung.LM.Po,Normalized partial distortion search algorithm to eliminate the influences by different search strategies, for block motion estimation,IEEE Trans.Circuits Syst.Video TechnoL thus making fair comparisons among several bit transform 10(3)(2000)417-422. [15]Y.-Q.Zhang.S.Zafar,Motion-compensated wavelet transform coding algorithms.In fact,the proposed bit transform method can for color video compression IEEE Trans Circuts svsr video Technol be both combined with fast motion estimation and applied 2(3)(1992)285-296. to complexity scalable motion estimation as an initial [16]Y.Liu,N.K.Ngan,Fast multiresolution motion estimation algorithms for wavelet-based scalable video coding.Signal Process.:Image search. Commun.22(5)(2007)448-465. [17]R.Zhang.ML Comer.Rate distortion performance of pyramid and subband motion compensation based on quantization theory.IEEE Trans.Circuits Syst Video TechnoL 20(12)(2010)1876-1881. Acknowledgments 18]Y.Wang.Y.Wang.H.Kuroda.A globally adaptive pixel-decimation algorithm for block-motion estimation,IEEE Trans.Circuits Syst vide0 echno106200011006-1011 This work is supported by the National Natural Science [19]J.Kim.T.Choi.A fast full-search motion estimation algorithm using Foundation of China (NSFC)under Grant nos.41271422. representative pixels and adaptive matching scan,IEEE Trans. 61073098.and 61373059.the Scientific Research Founda- Circuits Syst.Video Technol.10(7)(2000)1040-1048. tion for Ph.D.of Liaoning Province of China under Grant [20]X.Bao.D.Zhou,P.Liu,S.Goto.An advanced hierarchical motion estimation scheme with lossless frame recompression and early- no.20121076,and the Open Foundation of National Key level termination for beyond high-definition video coding.IEEE Laboratory for Novel Software Technology of Nanjing Trans.Multimedia 14 (2)(2012)237-249. University under Grant nos.KFKT2011B09 and [21]H.Gharavi,M.Mills.Blockmatching motion estimation new results IEEE Trans.Circuits Syst.37(5)(1990)649-651. KFKT2010B11,and the Jiangsu Key Laboratory's Open [22]M.J.Chen,LG.Chen,T.D.Chiueh.Y.P.Lee.A new block-matching Foundation of Image Processing and Image Communica- criterion for motion estimation and its implementation,IEEE Trans. tion of Nanjing University of Posts Telecommunications Circuits Syst.Video Technol.5(3)(1995)231-236. under Grant no.LBEK2011001,and the Foundation of [23]S.Lee,I.M.Kim,S.I.Chae.New motion estimation algorithm using adaptively quantized low bit-resolution image and its VLSI archi- Science and Technology Plan for Higher Education of tecture for MPEG2 video encoding.IEEE Trans.Circuits Syst.Video Liaoning Province under Grant nos.L2011192 and Technol.8(6)(1998)734-744. L2013406,and the Dalian Foundation for Science and [24]J.Lee.H.W.Park,A new distortion measure for motion estimation in motion-compensated hybrid video coding.Signal Process.:Image Technology under Grant no.2012121DW008. Commun.26(2)(2011)75-84. [25]J.Feng.K.-T.Lo,H.Mehrpour.A.E.Karbowiak.Adaptive block References matching motion estimation algorithm using bit-plane matching. in:Proceedings of the IEEE ICIP'95,voL 3.Washington,DC.USA 1995.pp.496-499. [1]SVC requirements specified by MPEG.JVT-N026(Technical Report). [26]M.M.Mizuki,U.Y.Desai,I.Masaki.A.Chandrakasan,A binary block ISO/IEC JTC1/SC29/WG11,Hong Kong.2005. matching architecture with reduced power consumption and silicon [2]Vision,applications and requirements for high efficiency video area requirement,in:Proceedings of the IEEE ICASSP'96,vol.6. coding (HEVC).n11872 (Technical Report)ISO/IEC ITC1/SC29 Atlanta.GA,USA.1996.pp.3248-3251. WG11.Daegu.KR.2011. [27]I.H.Lee.I.B.Ra,Efficient motion estimation using edge-based binary [3]G.J.Sullivan,J.R.Ohm,A.Ortega.E.Delp,A.Vetro.M.Barni,Future of block-matching and refinement based on motion vector correlation. video coding and transmission.IEEE Signal Process.Mag.23 (6) in:Proceedings of the ICIP'01.vol.2.Thessaloniki,Greece.2001. (2006)76-82. pp.957-960. [4]A.Erturk,S.Erturk,Two-bit transform for binary block motion [28]B.Natarajan,V.Bhaskaran,K.Konstantinides,Low-complexity estimation.IEEE Trans.Circuits Syst.Video Technol.15 (7)(2005) block-based motion estimation via one-bit transforms,IEEE Trans. 938-946. Circuits Syst.Video Technol.7(4)(1997)702-706. [5]Z.Chen.I Xu,Y.He.J.Zheng.Fast integer-pel and fractional-pel [29]S.Erturk,Multiplication-free one-bit transform for low-complexity motion estimation for H.264/AVC,J.Vis.Commun.Image R 17 (2) block-based motion estimation,IEEE Signal Process.Lett 14 (2) 2006)264-290. (2007)109-112.and AQ-2BT, and obviously cheaper than FS with eight-bit depth pixels. 7. Conclusion This study addresses a novel bit transform for low bitresolution motion estimation by exploiting the quantization theory and fuzzy membership function. We formulate the bit-depth downsampling of eight bit-depth pixels into optimum quantization in terms of mean squared error. Subsequently, we present an approximate solution using histogram equalization and uniform quantization, which is refined by a membership function with the variance of inter-frame noises as a variable. The membership function is able to reduce the interval partitioning errors due to camera capability and coding distortions, so as to improve bit transform accuracy and motion estimation efficiency. Extensive experimental results verify the effectiveness of our bit transform and its application in low bit-resolution motion estimation. Note that we employ full search strategy in Algorithm 3 to eliminate the influences by different search strategies, thus making fair comparisons among several bit transform algorithms. In fact, the proposed bit transform method can be both combined with fast motion estimation and applied to complexity scalable motion estimation as an initial search. Acknowledgments This work is supported by the National Natural Science Foundation of China (NSFC) under Grant nos. 41271422, 61073098, and 61373059, the Scientific Research Foundation for Ph.D. of Liaoning Province of China under Grant no. 20121076, and the Open Foundation of National Key Laboratory for Novel Software Technology of Nanjing University under Grant nos. KFKT2011B09 and KFKT2010B11, and the Jiangsu Key Laboratory’s Open Foundation of Image Processing and Image Communication of Nanjing University of Posts & Telecommunications under Grant no. LBEK2011001, and the Foundation of Science and Technology Plan for Higher Education of Liaoning Province under Grant nos. L2011192 and L2013406, and the Dalian Foundation for Science and Technology under Grant no. 2012J21DW008. References [1] SVC requirements specified by MPEG, JVT-N026 (Technical Report), ISO/IEC JTC1/SC29/WG11, Hong Kong, 2005. [2] Vision, applications and requirements for high efficiency video coding (HEVC), n11872 (Technical Report), ISO/IEC JTC1/SC29/ WG11, Daegu, KR, 2011. [3] G.J. Sullivan, J.R. Ohm, A. Ortega, E. Delp, A. Vetro, M. Barni, Future of video coding and transmission, IEEE Signal Process. Mag. 23 (6) (2006) 76–82. [4] A. Erturk, S. Erturk, Two-bit transform for binary block motion estimation, IEEE Trans. Circuits Syst. Video Technol. 15 (7) (2005) 938–946. [5] Z. Chen, J. Xu, Y. He, J. Zheng, Fast integer-pel and fractional-pel motion estimation for H.264/AVC, J. Vis. Commun. Image R 17 (2) (2006) 264–290. [6] T. Koga, K. Linuma, A. Hirano, Y. Lijima, T. Ishiguro, Motioncompensated interframe coding for video conferencing, in: Proceedings of the IEEE NTC'81, vol. 4, New Orleans, LA, 1981, pp. G5.3.1– G5.3.5. [7] S. Zhu, K.K. Ma, A new diamond search algorithm for fast blockmatching motion estimation, IEEE Trans. Image Process. 9 (2) (2000) 287–290. [8] C.H. Cheung, L.M. Po, Novel cross-diamond-hexagonal search algorithms for fast block motion estimation, IEEE Trans. Multimedia 7 (1) (2005) 16–22. [9] C. Zhu, X. Lin, L.-P. Chau, Hexagon-based search pattern for fast block motion estimation, IEEE Trans. Circuits Syst. Video Technol. 12 (5) (2002) 349–355. [10] Y. Ismail, J.B. McNeely, M. Shaaban, H. Mahmoud, M.A. Bayoumi, Fast motion estimation system using dynamic models for H.264/AVC video coding, IEEE Trans. Circuits Syst. Video Technol. 22 (1) (2012) 28–42. [11] A. Saha, J. Mukherjee, S. Sural, A neighborhood elimination approach for block matching in motion estimation, Signal Process.: Image Commun. 26 (8-9) (2011) 438–454. [12] C.-C. Lou, S.-W. Lee, C.-C.J. Kuo, Adaptive motion search range prediction for video encoding, IEEE Trans. Circuits Syst. Video Technol. 20 (12) (2010) 1903–1908. [13] W. Lin, K. Panusopone, D.M. Baylon, M.-T. Sun, Z. Chen, H. Li, A fast sub-pixel motion estimation algorithm for H.264/AVC video coding, IEEE Trans. Circuits Syst. Video Technol. 21 (2) (2011) 237–243. [14] C.K. Cheung, L.M. Po, Normalized partial distortion search algorithm for block motion estimation, IEEE Trans. Circuits Syst. Video Technol. 10 (3) (2000) 417–422. [15] Y.-Q. Zhang, S. Zafar, Motion-compensated wavelet transform coding for color video compression, IEEE Trans. Circuits Syst. Video Technol. 2 (3) (1992) 285–296. [16] Y. Liu, N.K. Ngan, Fast multiresolution motion estimation algorithms for wavelet-based scalable video coding, Signal Process.: Image Commun. 22 (5) (2007) 448–465. [17] R. Zhang, M.L. Comer, Rate distortion performance of pyramid and subband motion compensation based on quantization theory, IEEE Trans. Circuits Syst. Video Technol. 20 (12) (2010) 1876–1881. [18] Y. Wang, Y. Wang, H. Kuroda, A globally adaptive pixel-decimation algorithm for block-motion estimation, IEEE Trans. Circuits Syst. Video Technol. 10 (6) (2000) 1006–1011. [19] J. Kim, T. Choi, A fast full-search motion estimation algorithm using representative pixels and adaptive matching scan, IEEE Trans. Circuits Syst. Video Technol. 10 (7) (2000) 1040–1048. [20] X. Bao, D. Zhou, P. Liu, S. Goto, An advanced hierarchical motion estimation scheme with lossless frame recompression and earlylevel termination for beyond high-definition video coding, IEEE Trans. Multimedia 14 (2) (2012) 237–249. [21] H. Gharavi, M. Mills, Blockmatching motion estimation new results, IEEE Trans. Circuits Syst. 37 (5) (1990) 649–651. [22] M.J. Chen, L.G. Chen, T.D. Chiueh, Y.P. Lee, A new block-matching criterion for motion estimation and its implementation, IEEE Trans. Circuits Syst. Video Technol. 5 (3) (1995) 231–236. [23] S. Lee, J.M. Kim, S.I. Chae, New motion estimation algorithm using adaptively quantized low bit-resolution image and its VLSI architecture for MPEG2 video encoding, IEEE Trans. Circuits Syst. Video Technol. 8 (6) (1998) 734–744. [24] J. Lee, H.W. Park, A new distortion measure for motion estimation in motion-compensated hybrid video coding, Signal Process.: Image Commun. 26 (2) (2011) 75–84. [25] J. Feng, K.-T. Lo, H. Mehrpour, A.E. Karbowiak, Adaptive block matching motion estimation algorithm using bit-plane matching, in: Proceedings of the IEEE ICIP'95, vol. 3, Washington, DC, USA, 1995, pp. 496–499. [26] M.M. Mizuki, U.Y. Desai, I. Masaki, A. Chandrakasan, A binary block matching architecture with reduced power consumption and silicon area requirement, in: Proceedings of the IEEE ICASSP'96, vol. 6, Atlanta, GA, USA, 1996, pp. 3248–3251. [27] J.H. Lee, J.B. Ra, Efficient motion estimation using edge-based binary block-matching and refinement based on motion vector correlation, in: Proceedings of the ICIP'01, vol. 2, Thessaloniki, Greece, 2001, pp. 957–960. [28] B. Natarajan, V. Bhaskaran, K. Konstantinides, Low-complexity block-based motion estimation via one-bit transforms, IEEE Trans. Circuits Syst. Video Technol. 7 (4) (1997) 702–706. [29] S. Ertürk, Multiplication-free one-bit transform for low-complexity block-based motion estimation, IEEE Signal Process. Lett. 14 (2) (2007) 109–112. 1446 C.-M. Song et al. / Signal Processing: Image Communication 28 (2013) 1435–1447