正在加载图片...
2. CV yclic groups Definition 14: The group G is called a cyclic group if there exists gEG such that h= gk for any h∈G, where k∈ Z We say that g is a generator of G We denoted by g-g Example: group{1,-1,-i};×,1=,-1=i2,=, i and -i are generators of G. Z;+2. Cyclic groups Definition 14: The group G is called a cyclic group if there exists gG such that h=gk for any hG , where kZ.We say that g is a generator of G. We denoted by G=(g). Example:group[{1,-1,i.-i};],1=i0 ,-1=i2 ,-i=i3 , i and –i are generators of G. [Z;+]
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有