正在加载图片...
·216· 工程科学学报,第40卷,第2期 low alloyed TRIP-steels.Steel Res Int,2002,73(6-7):259 3结论 [7]Zheng J.Huang W G.Microstructure and mechanical properties of ultra-high carbon steel containing Al.Foundry Technol,2014,35 本文对比分析了A1质量分数为0.77% (1):24 (0.77A1)和不含A1(0AI)的H11钢的淬回火组织 (郑静,黄维刚.含铝超高碳钢组织及力学性能的研究.铸造 和性能,借助碳化物萃取方法对热处理过程中A!对 技术,2014,35(1):24) 碳化物的影响进行了研究,主要结论如下: [8]Wu K M,Bhadeshia HK D H.Extremely fine pearlite by continu- (1)A!可以促进H11钢奥氏体化过程中碳化 ous cooling transformation.Scripta Mater,2012,67(1):53 [9]Palizdar Y,Scott A J,Cochrane R C,et al.Understanding the 物的溶解,导致了淬火晶粒一定的粗化,使得 effect of aluminium on microstructure in low level nitrogen steels. 0.77Al钢淬火硬度比0Al钢低1~3HRC. Mater Sci Technol,2009,25(10):1243 (2)A1可以阻碍H11钢回火过程中碳化物的 [10]Li SS,Liu Y H,Song Y L.et al.Simplification of heat treat- 析出和聚集,560℃以下温度回火效果更加显著.Al ment process in a tool steel by aluminium addition.Mater Sci 对回火碳化物的类型也有一定的影响,主要体现在 Technol.2016,32(15):1597 [11]Boc I,Grof T.The core-loss reducing effect of aluminum in non- Al可以使(Fe,Cr),C、MoC和Cr,C,更加稳定,抑制 oriented Fe-Si steels.IEEE Trans Magn,1986,22(5):517 (Fe,Cr)3C、Mo,C和CrzsCsl的析出,这种影响是通过 [12]Sheng Z D,Zuo PP,Wu X C.Effect of Al on the continuous 阻碍回火过程中元素的聚集进而影响局部区域碳和 cooling transformation characteristic of hot extrusion die steel 合金元素比例来实现的 SDAH13.J Unir Sci Technol Beijing,2016,38(11):1559 (3)A!可以显著提高H11钢的冲击性能, (盛振栋,左鹏鹏,吴晓春.A对热挤压模具钢SDAHI3连 0.77A!钢奥氏体化过程中碳化物的大量溶解和回 续冷却转变规律的影响.北京科技大学学报,2016,38 (11):1559) 火时碳化物细小弥散分布是提高冲击韧性的主要 [13]Li F Y,Ma D S,Chen ZZ,et al.Structure and properties of 原因. high temperature diffused-superfining treated die steel H13.Spec Steel,2008,29(3):63 参考文献 (李凤艳,马党参,陈再枝,等.高温扩散-超细化H13模具 [1]Delagnes D.Lamesle P,Mathon M H,et al.Influence of silicon 钢的组织和性能.特殊钢,2008,29(3):63) content on the precipitation of secondary carbides and fatigue prop [14]Ning A G.Investigation on Nanoscale Precipitates in H13 Hot- erties of a 5%Cr tempered martensitic steel.Mater Sci Eng A, ork Die Steel and Comprehensive Strengthening Mechanism of 2005,394(1-2):435 Steel Dissertation ]Beijing:University of Science and Technol- [2]Wu X C,Zuo PP.Development status and trend of hot working ogy Beijing,2015 die steels at home and abroad.Die Mould Ind,2013,39(10):1 (宁安刚.热作模具钢中纳米级析出物及钢的综合强化机理 (吴晓春,左鹏鹏.国内外热作模具钢发展现状与趋势.模具 研究[学位论文].北京:北京科技大学,2015) 工业,2013,39(10):1) [15]Torres H,Varga M,Ripoll M R.High temperature hardness of [3]Suh D W,Park S J,Oh C S,et al.Influence of partial replace- steels and iron-based alloys.Mater Sci Eng A,2016,671:170 ment of Si by Al on the change of phase fraction during heat treat- [16]Danoix F,Danoix R,Akre J,et al.Atom probe tomography in- ment of TRIP steels.Scripta Mater,2007,57(12):1097 vestigation of assisted precipitation of secondary hardening car- [4]Peng H F,Song X,Gao A G,et al.Microstructure and mechani- bides in a medium carbon martensitic steels.J Microsc,2011, cal properties of the Al-added ultrahigh carbon steel.Mater Lett, 244(3):305 2005,59(26):3330 [17]Qian L H,Zhou Q,Zhang F C,et al.Microstructure and me- [5]Zhang X,Fan LJ,Xu Y L,et al.Effect of aluminum on micro- chanical properties of a low carbon carbide-free bainitic steel co- structure,mechanical properties and pitting corrosion resistance of alloyed with Al and Si.Mater Des,2012,39:264 ultra-pure 429 ferritic stainless steels.Mater Des,2015,65:682 [18]Souki I,Delagnes D,Lours P.Influence of heat treatment on the [6]Traint S,Pichler A.Hauzenberger K,et al.Influence of silicon, fracture toughness and crack propagation in 5%Cr martensitic aluminium,phosphorus and copper on the phase transformations of steel.Procedia Eng,2011,10:631工程科学学报,第 40 卷,第 2 期 3 结论 本文 对 比 分 析 了 Al 质 量 分 数 为 0郾 77% (0郾 77Al) 和不含 Al (0Al) 的 H11 钢的淬回火组织 和性能,借助碳化物萃取方法对热处理过程中 Al 对 碳化物的影响进行了研究,主要结论如下: (1) Al 可以促进 H11 钢奥氏体化过程中碳化 物的 溶 解, 导 致 了 淬 火 晶 粒 一 定 的 粗 化, 使 得 0郾 77Al 钢淬火硬度比 0Al 钢低 1 ~ 3 HRC. (2) Al 可以阻碍 H11 钢回火过程中碳化物的 析出和聚集,560 益以下温度回火效果更加显著. Al 对回火碳化物的类型也有一定的影响,主要体现在 Al 可以使(Fe,Cr)2 C、MoC 和 Cr7 C3更加稳定,抑制 (Fe,Cr)3C、Mo2C 和 Cr23C6的析出,这种影响是通过 阻碍回火过程中元素的聚集进而影响局部区域碳和 合金元素比例来实现的. (3 ) Al 可以显著提高 H11 钢的冲击性能, 0郾 77Al 钢奥氏体化过程中碳化物的大量溶解和回 火时碳化物细小弥散分布是提高冲击韧性的主要 原因. 参 考 文 献 [1] Delagnes D, Lamesle P, Mathon M H, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue prop鄄 erties of a 5% Cr tempered martensitic steel. Mater Sci Eng A, 2005, 394(1鄄2): 435 [2] Wu X C, Zuo P P. Development status and trend of hot working die steels at home and abroad. Die Mould Ind, 2013, 39(10): 1 (吴晓春, 左鹏鹏. 国内外热作模具钢发展现状与趋势. 模具 工业, 2013, 39(10): 1) [3] Suh D W, Park S J, Oh C S, et al. Influence of partial replace鄄 ment of Si by Al on the change of phase fraction during heat treat鄄 ment of TRIP steels. Scripta Mater, 2007, 57(12): 1097 [4] Peng H F, Song X, Gao A G, et al. Microstructure and mechani鄄 cal properties of the Al鄄added ultrahigh carbon steel. Mater Lett, 2005, 59(26): 3330 [5] Zhang X, Fan L J, Xu Y L, et al. Effect of aluminum on micro鄄 structure, mechanical properties and pitting corrosion resistance of ultra鄄pure 429 ferritic stainless steels. Mater Des, 2015, 65: 682 [6] Traint S, Pichler A, Hauzenberger K, et al. Influence of silicon, aluminium, phosphorus and copper on the phase transformations of low alloyed TRIP鄄steels. Steel Res Int, 2002, 73(6鄄7): 259 [7] Zheng J, Huang W G. Microstructure and mechanical properties of ultra鄄high carbon steel containing Al. Foundry Technol, 2014, 35 (1): 24 (郑静, 黄维刚. 含铝超高碳钢组织及力学性能的研究. 铸造 技术, 2014, 35(1): 24) [8] Wu K M, Bhadeshia H K D H. Extremely fine pearlite by continu鄄 ous cooling transformation. Scripta Mater, 2012, 67(1): 53 [9] Palizdar Y, Scott A J, Cochrane R C, et al. Understanding the effect of aluminium on microstructure in low level nitrogen steels. Mater Sci Technol, 2009, 25(10): 1243 [10] Li S S, Liu Y H, Song Y L, et al. Simplification of heat treat鄄 ment process in a tool steel by aluminium addition. Mater Sci Technol, 2016, 32(15): 1597 [11] Boc I, Grof T. The core鄄loss reducing effect of aluminum in non鄄 oriented Fe鄄鄄 Si steels. IEEE Trans Magn, 1986, 22(5): 517 [12] Sheng Z D, Zuo P P, Wu X C. Effect of Al on the continuous cooling transformation characteristic of hot extrusion die steel SDAH13. J Univ Sci Technol Beijing, 2016, 38(11): 1559 (盛振栋, 左鹏鹏, 吴晓春. Al 对热挤压模具钢 SDAH13 连 续冷却转变规律的影响. 北京科技大学学报, 2016, 38 (11): 1559) [13] Li F Y, Ma D S, Chen Z Z, et al. Structure and properties of high temperature diffused鄄superfining treated die steel H13. Spec Steel, 2008, 29(3): 63 (李凤艳, 马党参, 陈再枝, 等. 高温扩散鄄鄄超细化 H13 模具 钢的组织和性能. 特殊钢, 2008, 29(3): 63) [14] Ning A G. Investigation on Nanoscale Precipitates in H13 Hot鄄 work Die Steel and Comprehensive Strengthening Mechanism of Steel [Dissertation]. Beijing: University of Science and Technol鄄 ogy Beijing, 2015 (宁安刚. 热作模具钢中纳米级析出物及钢的综合强化机理 研究[学位论文]. 北京: 北京科技大学, 2015) [15] Torres H, Varga M, Ripoll M R. High temperature hardness of steels and iron鄄based alloys. Mater Sci Eng A, 2016, 671: 170 [16] Danoix F, Danoix R, Akre J, et al. Atom probe tomography in鄄 vestigation of assisted precipitation of secondary hardening car鄄 bides in a medium carbon martensitic steels. J Microsc, 2011, 244(3): 305 [17] Qian L H, Zhou Q, Zhang F C, et al. Microstructure and me鄄 chanical properties of a low carbon carbide鄄free bainitic steel co鄄 alloyed with Al and Si. Mater Des, 2012, 39: 264 [18] Souki I, Delagnes D, Lours P. Influence of heat treatment on the fracture toughness and crack propagation in 5% Cr martensitic steel. Procedia Eng, 2011, 10: 631 ·216·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有