正在加载图片...
颜丙乾等:基于PCA和MCMC的贝叶斯方法的海下矿山水害源识别分析 1421 in mines based on moment tensor inversion.Chin J Eng,2015 for disaster management.Int J Inf Technol Decis Mak,2018 37(3):267 17(5):1469 (柴金飞,金爱兵,高永涛,等.基于矩张量反演的矿山突水孕育 [18]Zhao P,Xiong L.Inverse problem for the identification of the 过程.工程科学学报,2015,37(3):267) source term in chlorine pipeline leak.Sci Technol Rev,2013, [4]Li L P,Lei T,Li S C,et al.Risk assessment of water inrush in 31(26):48 karst tunnels and software development.Arabian J Geosci,2015, (赵培,熊亮.氯气管道泄漏源项识别反演问题.科技导报,2013, 8(4):1843 31(26):48) [5] Xu X.Tian K Y,Zheng JY.Discrimination of mine water inrush [19]Chen H Y,Teng Y G,Wang J S,et al.Event source identification source based on genetic BP neural network model.Ind Saf Environ of water pollution based on Bayesian-MCMC.J Hunan Univ Nat Prot,2017,43(11):21 Sc1,2012,39(6):74 (徐星,田坤云,郑吉玉.基于遗传BP神经网络模型的矿井突水 (陈海洋,膝彦国,王金生,等.基于Bayesian-MCMC方法的水体 水源判别.工业安全与环保,2017,43(11):21) 污染识别反问题.湖南大学学报(自然科学版),2012,39(6):74) [6]Chen H J,Li X B,Liu A H.Studies of water source determination [20]Yan X S,Sun J,Hu C Y.Research on contaminant sources method of mine water inrush based on Bayes'multi-group step- identification of uncertainty water demand using genetic wise discriminant analysis theory.Rock Soil Mech,2009.30(12): algorithm.Cluster Computing,2017,20(2):1007 3655 [21]Kruschke J K,Liddell T M.The Bayesian New Statistics: (陈红江,李夕兵,刘爱华.矿井突水水源判别的多组逐步 Hypothesis testing,estimation,meta-analysis,and power analysis Bayes判别方法研究.岩土力学,2009,30(12):3655) from a Bayesian perspective.Psychonomic Bull Rev,2018,25(1): [7]Chen HJ.Li X B.Liu A H.et al.Forecast method of water inrush 178 quantity from coal floor based on distance discriminant analysis [22]Lu F,Yan D H.Bayesian MCMC flood frequency analysis method theory.J China Coal Soc,2009,34(4):487 based on generalized extreme value distribution and Metropolis. (陈红江,李夕兵,刘爱华,等.煤层底板突水量的距离判别分析 Hastings sampling algorithm./Hydrau/Eng,2013,44(8):942 预测方法.煤炭学报,2009,34(4):487) (鲁帆,严登华.基于广义极值分布和Metropolis-Hastings抽样算 [8]Liu Z X,Dang W G,He X Q.Undersea safety mining of the large 法的贝叶斯MCMC洪水频率分析方法.水利学报,2013,44(8): gold deposit in Xinli District of Sanshandao Gold Mine.IntJ 942) Miner Metall Mater,2012,19(7):574 [9]Li X,Wang B,Liu Y,et al.Stochastic feature mapping for pac- [23]Yang X T.Wang L B.Zhang Z W.The application of fisher bayes classification.Mach Learning,2015,101(1-3):5 approach to discrimination of mine water-inrush source.Sci Technol Inf,2014(11):97 [10]Yan H X,Moradkhani H.Toward more robust extreme flood (杨晓彤,王来斌,张忠文.Fisher方法在矿井突水水源判别中的 prediction by Bayesian hierarchical and multimodeling.Nat 应用.科技信息.2014(11):97) Hazards,2016,81(1):203 [11]Zhou F,Bai X R.High-resolution sparse subband imaging based [24]Liu A H,Liu Y P,Cheng L.Application of terary mixture model on Bayesian learning with hierarchical priors.IEEE Trans Geosc in discrimination of underground mine water in rush.Central S Remote Sensing,2018,56(8):4568 Univ Sci Technol,2014,45(8):2768 [12]Ruijters E,Stoelinga M.Fault tree analysis:A survey of the state- (刘爱华,刘银朋,程力.三元混合模型在地下矿山涌水水源计 算分析中的应用.中南大学学报(自然科学版),2014,45(8): of-the-art in modeling,analysis and tools.Comput Sci Rev, 2015(15-16):29 2768) [13]Fisher R A.Inverse probability and the use of likelihood. [25]Yang BB,Sui W H,Duan L H.Risk assessment of water inrush in Mathematical Proceed Cambridge Philosophical Soc,1932. an underground coal mine based on GIS and fuzzy set theory. 28(3:257 Mine Water Emviron,2017,36(4):617 [14]Duan G L,Hu W X,Wang J R.Research on the natural image [26]Li G Q,Ma F S,Meng Z P.Analysis of connectivity between super-resolution reconstruction algorithm based on compressive undersea metal mine and overlying seawater in Xinli mine area.J perception theory and deep learning model.Neurocomputing. Central S Uniy Sci Technol,2012,43(10):3938 2016,208:117 (李国庆,马凤山,孟召平,新立矿区海底金属矿坑与上覆海水 [15]Unesi M,Noaparast M,Shafaei S Z,et al.Modeling the effects of 的连通性分析.中南大学学报(自然科学版),2012,43(10):3938) ore properties on water recovery in the thickening process.n [27]Li G Q,Wang X Q,Yin G M.Application of principal component Miner Metall Mater,2014,21(9):851 analysis in identifying the seepage of seawater into Xinli mine pit. [16]Huang Y X,Li G F,Bie Z H,et al.Reliability evaluation of Chin J Geol Hazard Control,2014,25(3):83 distributed integrated energy system.Smart Power,2017,45(7):43 (李国庆,汪新庆,尹改梅.主成分分析法在判定新立矿井海水 (黄玉雄,李更丰,别朝红,等.分布式综合能源系统可靠性评估 海入中的应用.中国地质灾害与防治学报,2014,25(3):83) 智慧电力,2017,45(7):43) [28]Sun W J,Zhou W F,Jiao J.Hydrogeological classification and [17]Caroleo B,Palumbo E,Osella M,et al.A knowledge-based multi- water inrush accidents in China's coal mines.Mine Water Environ, criteria decision support system encompassing cascading effects 2016.35(2):214in  mines  based  on  moment  tensor  inversion. Chin J Eng,  2015, 37(3): 267 (柴金飞, 金爱兵, 高永涛, 等. 基于矩张量反演的矿山突水孕育 过程. 工程科学学报, 2015, 37(3):267 ) Li  L  P,  Lei  T,  Li  S  C,  et  al.  Risk  assessment  of  water  inrush  in karst tunnels and software development. Arabian J Geosci, 2015, 8(4): 1843 [4] Xu X, Tian K Y, Zheng J Y. Discrimination of mine water inrush source based on genetic BP neural network model. Ind Saf Environ Prot, 2017, 43(11): 21 (徐星, 田坤云, 郑吉玉. 基于遗传BP神经网络模型的矿井突水 水源判别. 工业安全与环保, 2017, 43(11):21 ) [5] Chen H J, Li X B, Liu A H. Studies of water source determination method  of  mine  water  inrush  based  on  Bayes ’  multi-group  step￾wise discriminant analysis theory. Rock Soil Mech, 2009, 30(12): 3655 (陈红江, 李夕兵, 刘爱华. 矿井突水水源判别的多组逐步 Bayes判别方法研究. 岩土力学, 2009, 30(12):3655 ) [6] Chen H J, Li X B, Liu A H, et al. Forecast method of water inrush quantity  from  coal  floor  based  on  distance  discriminant  analysis theory. J China Coal Soc, 2009, 34(4): 487 (陈红江, 李夕兵, 刘爱华, 等. 煤层底板突水量的距离判别分析 预测方法. 煤炭学报, 2009, 34(4):487 ) [7] Liu Z X, Dang W G, He X Q. Undersea safety mining of the large gold  deposit  in  Xinli  District  of  Sanshandao  Gold  Mine. Int J Miner Metall Mater, 2012, 19(7): 574 [8] Li X, Wang B, Liu Y, et al. Stochastic feature mapping for pac￾bayes classification. Mach Learning, 2015, 101(1-3): 5 [9] Yan  H  X,  Moradkhani  H.  Toward  more  robust  extreme  flood prediction  by  Bayesian  hierarchical  and  multimodeling. Nat Hazards, 2016, 81(1): 203 [10] Zhou F, Bai X R. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans Geosci Remote Sensing, 2018, 56(8): 4568 [11] Ruijters E, Stoelinga M. Fault tree analysis: A survey of the state￾of-the-art  in  modeling,  analysis  and  tools. Comput Sci Rev, 2015(15-16): 29 [12] Fisher  R  A.  Inverse  probability  and  the  use  of  likelihood. Mathematical Proceed Cambridge Philosophical Soc,  1932, 28(3): 257 [13] Duan  G  L,  Hu  W  X,  Wang  J  R.  Research  on  the  natural  image super-resolution  reconstruction  algorithm  based  on  compressive perception  theory  and  deep  learning  model. Neurocomputing, 2016, 208: 117 [14] Unesi M, Noaparast M, Shafaei S Z, et al. Modeling the effects of ore  properties  on  water  recovery  in  the  thickening  process. Int J Miner Metall Mater, 2014, 21(9): 851 [15] Huang  Y  X,  Li  G  F,  Bie  Z  H,  et  al.  Reliability  evaluation  of distributed integrated energy system. Smart Power, 2017, 45(7): 43 (黄玉雄, 李更丰, 别朝红, 等. 分布式综合能源系统可靠性评估. 智慧电力, 2017, 45(7):43 ) [16] Caroleo B, Palumbo E, Osella M, et al. A knowledge-based multi￾criteria  decision  support  system  encompassing  cascading  effects [17] for  disaster  management. Int J Inf Technol Decis Mak,  2018, 17(5): 1469 Zhao  P,  Xiong  L.  Inverse  problem  for  the  identification  of  the source  term  in  chlorine  pipeline  leak. Sci Technol Rev,  2013, 31(26): 48 (赵培, 熊亮. 氯气管道泄漏源项识别反演问题. 科技导报, 2013, 31(26):48 ) [18] Chen H Y, Teng Y G, Wang J S, et al. Event source identification of water pollution based on Bayesian-MCMC. J Hunan Univ Nat Sci, 2012, 39(6): 74 (陈海洋, 滕彦国, 王金生, 等. 基于Bayesian-MCMC方法的水体 污染识别反问题. 湖南大学学报(自然科学版), 2012, 39(6):74 ) [19] Yan  X  S,  Sun  J,  Hu  C  Y.  Research  on  contaminant  sources identification  of  uncertainty  water  demand  using  genetic algorithm. Cluster Computing, 2017, 20(2): 1007 [20] Kruschke  J  K,  Liddell  T  M.  The  Bayesian  New  Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bull Rev, 2018, 25(1): 178 [21] Lu F, Yan D H. Bayesian MCMC flood frequency analysis method based  on  generalized  extreme  value  distribution  and  Metropolis￾Hastings sampling algorithm. J Hydraul Eng, 2013, 44(8): 942 (鲁帆, 严登华. 基于广义极值分布和Metropolis-Hastings抽样算 法的贝叶斯MCMC洪水频率分析方法. 水利学报, 2013, 44(8): 942 ) [22] Yang  X  T,  Wang  L  B,  Zhang  Z  W.  The  application  of  fisher approach  to  discrimination  of  mine  water-inrush  source. Sci Technol Inf, 2014(11): 97 (杨晓彤, 王来斌, 张忠文. Fisher方法在矿井突水水源判别中的 应用. 科技信息, 2014(11):97 ) [23] Liu A H, Liu Y P, Cheng L. Application of ternary mixture model in discrimination of underground mine water in rush. J Central S Univ Sci Technol, 2014, 45(8): 2768 (刘爱华, 刘银朋, 程力. 三元混合模型在地下矿山涌水水源计 算分析中的应用. 中南大学学报(自然科学版), 2014, 45(8): 2768 ) [24] Yang B B, Sui W H, Duan L H. Risk assessment of water inrush in an  underground  coal  mine  based  on  GIS  and  fuzzy  set  theory. Mine Water Environ, 2017, 36(4): 617 [25] Li  G  Q,  Ma  F  S,  Meng  Z  P.  Analysis  of  connectivity  between undersea metal mine and overlying seawater in Xinli mine area. J Central S Univ Sci Technol, 2012, 43(10): 3938 (李国庆, 马凤山, 孟召平. 新立矿区海底金属矿坑与上覆海水 的连通性分析. 中南大学学报(自然科学版), 2012, 43(10):3938 ) [26] Li G Q, Wang X Q, Yin G M. Application of principal component analysis in identifying the seepage of seawater into Xinli mine pit. Chin J Geol Hazard Control, 2014, 25(3): 83 (李国庆, 汪新庆, 尹改梅. 主成分分析法在判定新立矿井海水 渗入中的应用. 中国地质灾害与防治学报, 2014, 25(3):83 ) [27] Sun  W  J,  Zhou  W  F,  Jiao  J.  Hydrogeological  classification  and water inrush accidents in China’s coal mines. Mine Water Environ, 2016, 35(2): 214 [28] 颜丙乾等: 基于 PCA 和 MCMC 的贝叶斯方法的海下矿山水害源识别分析 · 1421 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有