正在加载图片...
朱彧等:钙钛矿太阳能电池稳定性研究进展 25· [51]Fei C B,Li B,Zhang R,et al.Highly efficient and stable [58]Tavakoli MM,Tress W,Milic J V,et al.Addition of perovskite solar cells based on monolithically grained adamantylammonium iodide to hole transport layers enables highly CH3NH:Pbl;film.Ady Energy Mater,2017,7(9):1602017 efficient and electroluminescent perovskite solar cells.Energy [52]Niu T Q,Lu J,Munir R,et al.Stable high-performance perovskite Environ Sci,2018,11(11):3310 solar cells via grain boundary passivation.Ady Mater,2018, [59]Li X,Yang J Y.Jiang Q H,et al.Perovskite solar cells employing 30(16):1706576 an eco-friendly and low-cost inorganic hole transport layer for [53]Li X D,Zhang W X,Wang Y C,et al.In-situ cross-linking enhanced photovoltaic performance and operational stability.J strategy for efficient and operationally stable methylammoniun Mater Chem A,2019,7(12):7065 lead iodide solar cells.Nat Commun,2018,9:3806 [60]Kung P K,Li M H,Lin P Y,et al.A review of inorganic hole [54]Feng JS,Zhu X J,Yang Z.et al.Record efficiency stable flexible transport materials for perovskite solar cells.Adv Mater Interfaces, perovskite solar cell using effective additive assistant strategy.Adv 2018,5(22):1800882 Maer,2018,30(35):1801418 [61]Kang J S,Kim J Y,Yoon J,et al.Room-temperature vapor [55]Wu Y Z,Xie F X,Chen H,et al.Thermally stable MAPbI3 deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells with efficiency of 19.19%and area over 1 perovskite solar cells.Adv Energy Mater,2018,8(13):1703114 cm2 achieved by additive engineering.Adv Mater,2017,29(28): [62]Arora N,Dar M I,Hinderhofer A,et al.Perovskite solar cells with 17011073 CuSCN hole extraction layers yield stabilized efficiencies greater [56]Tavakoli MM,Bi D Q,Pan L F,et al.Adamantanes enhance the than20%.Science,2017,358(6364):768 photovoltaic performance and operational stability of perovskite [63]Zhang H,Wang H,Chen W,et al.CuGaO:a promising inorganic solar cells by effective mitigation of interfacial defect states.Adv hole-transporting material for highly efficient and stable perovskite Energy Mater,2018,8(19):1800275 solar cells.Ady Mater,2017,29(8):1604984 [57]Tavakoli MM,Yadav P,Prochowicz D,et al.Controllable [64]Akin S,Liu Y H,Dar M I,et al.Hydrothermally processed perovskite crystallization via antisolvent technique using chloride CuCrO2 nanoparticles as an inorganic hole transporting material additives for highly efficient planar perovskite solar cells.Adv for low-cost perovskite solar cells with superior stability.J Mater Energy Mater,2019,9(17):1803587 Chem4,2018,6(41):20327Fei  C  B,  Li  B,  Zhang  R,  et  al.  Highly  efficient  and  stable perovskite  solar  cells  based  on  monolithically  grained CH3NH3PbI3 film. Adv Energy Mater, 2017, 7(9): 1602017 [51] Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar  cells via grain  boundary  passivation. Adv Mater,  2018, 30(16): 1706576 [52] Li  X  D,  Zhang  W  X,  Wang  Y  C,  et  al. In-situ cross-linking strategy  for  efficient  and  operationally  stable  methylammoniun lead iodide solar cells. Nat Commun, 2018, 9: 3806 [53] Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35): 1801418 [54] Wu  Y  Z,  Xie  F  X,  Chen  H,  et  al.  Thermally  stable  MAPbI3 perovskite  solar  cells  with  efficiency  of  19.19% and  area  over  1 cm2 achieved by additive engineering. Adv Mater, 2017, 29(28): 17011073 [55] Tavakoli M M, Bi D Q, Pan L F, et al. Adamantanes enhance the photovoltaic  performance  and  operational  stability  of  perovskite solar cells by effective mitigation of interfacial defect states. Adv Energy Mater, 2018, 8(19): 1800275 [56] Tavakoli  M  M,  Yadav  P,  Prochowicz  D,  et  al.  Controllable perovskite crystallization via antisolvent technique using chloride additives  for  highly  efficient  planar  perovskite  solar  cells. Adv Energy Mater, 2019, 9(17): 1803587 [57] Tavakoli  M  M,  Tress  W,  Milić  J  V,  et  al.  Addition  of adamantylammonium iodide to hole transport layers enables highly efficient  and  electroluminescent  perovskite  solar  cells. Energy Environ Sci, 2018, 11(11): 3310 [58] Li X, Yang J Y, Jiang Q H, et al. Perovskite solar cells employing an  eco-friendly  and  low-cost  inorganic  hole  transport  layer  for enhanced  photovoltaic  performance  and  operational  stability. J Mater Chem A, 2019, 7(12): 7065 [59] Kung  P  K,  Li  M  H,  Lin  P  Y,  et  al.  A  review  of  inorganic  hole transport materials for perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800882 [60] Kang  J  S,  Kim  J  Y,  Yoon  J,  et  al.  Room-temperature  vapor deposition  of  cobalt  nitride  nanofilms  for  mesoscopic  and perovskite solar cells. Adv Energy Mater, 2018, 8(13): 1703114 [61] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 [62] Zhang H, Wang H, Chen W, et al. CuGaO2 : a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater, 2017, 29(8): 1604984 [63] Akin  S,  Liu  Y  H,  Dar  M  I,  et  al.  Hydrothermally  processed CuCrO2 nanoparticles  as  an  inorganic  hole  transporting  material for low-cost perovskite solar cells with superior stability. J Mater Chem A, 2018, 6(41): 20327 [64] 朱    彧等: 钙钛矿太阳能电池稳定性研究进展 · 25 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有