正在加载图片...
4、解题步骤 1)根据问题的具体情况,选取一个变量例如x为 积分变量,并确定它的变化区间[a,b; 2)设想把区间[a,b分成n个小区间,取其中任 一小区间并记为[x,x+dx],求出相应于这小区 间的部分量△U的近似值.如果△U能近似地表 示为4,b上的一个连续函数在x处的值∫(x)与 dx的乘积,就把∫(x)dxc称为量U/的元素且记作 lU,即U=f(x)dx; 3)以所求量U的元素f(x)dc为被积表达式,在 区间a,b上作定积分,得U=f(x)d, 即为所求量U4、解题步骤 1)根据问题的具体情况,选取一个变量例如x 为 积分变量,并确定它的变化区间[a,b]; 2)设想把区间[a,b]分成n个小区间,取其中任 一小区间并记为[x, x + dx],求出相应于这小区 间的部分量U 的近似值.如果U 能近似地表 示为[a,b]上的一个连续函数在x处的值 f (x)与 dx的乘积,就把 f (x)dx称为量U 的元素且记作 dU,即dU = f (x)dx; 3)以所求量U 的元素 f (x)dx为被积表达式,在 区间[a,b]上作定积分,得 =  b a U f (x)dx, 即为所求量U .
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有