正在加载图片...
首先,我们简要说明积分运算是如何产生的? 般来说,在数学中,一种运算的出现都伴随着它的逆运算。 例如,有加就有减,有乘就有除,有乘方就有开方,等等。我们 前面学过的微分运算也不例外,它也有逆运算一积分运算。我们 已经知道,微分运算的基本问题是研究如何从已知函数求出它的 导函数,那么我们很自然地会提出与之相反的问题是:求一个未 知函数,使其导函数恰是某一已知函数。提出这样的逆问题,是 因为它存在于许多实际的问题中,例如:已知速度求路程;已知 加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足 的某一规律),求曲线方程等等。要解决这些实际问题,自然会 想到微分运算的逆运算,这就是产生积分运算的原因 为了更好地理解积分运算是导数(微分)运算的逆运算,我 们在介绍积分运算时,把乘方运算(开方)和它作比较:2 首先,我们简 要说明积分运算是如何产生的? 一般来说,在数学中,一种运算的出现都伴随着它的逆运算。 例如,有加就有减,有乘就有除,有乘方就有开方,等等。我们 前面学过的微分运算也不例外,它也有逆运算—积分运算。我们 已经知道,微分运算的基本问题是研究如何从已知函数求出它的 导函数,那么我们很自然地会提出与之相反的问题是:求一个未 知函数,使其导函数恰是某一已知函数。提出这样的逆问题,是 因为它存在于许多实际的问题中,例如:已知速度求路程;已知 加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足 的某一规律),求曲线方程等等。要解决这些实际问题,自然会 想到微分运算的逆运算,这就是产生积分运算的原因。 为了更好地理解积分运算是导数(微分)运算的逆运算,我 们在介绍积分运算时,把乘方运算(开方)和它作比较:
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有