正在加载图片...
.162 工程科学学报,第42卷,第2期 粒的捕集效率随着人口风速的增加而减小,后趋 particle within a high gradient magnetic separator.Physica C, 于稳定;当B<0.03T时,磁性单纤维对PM25颗粒 2013,484:333 的捕集效率随着入口风速的增加而减小.磁性单 [12]Zheng X Y,Wang Y H,Lu D F.Investigation of the particle capture of elliptic cross-sectional matrix for high gradient 纤维对PM2s的捕集随粉尘粒径的增加而增大,当磁 magnetic separation.Powder Technol,2016,297:303 性纤维磁感应强度越大,颗粒随粒径增长率越小 [13]Qian F P,Huang N J,Zhu X J,et al.Numerical study of the gas- (4)对于高梯度磁场(H=0.5T,B=0.01~0.05T, solid flow characteristic of fibrous media based on SEM using Xp0.025),单纤维对PM2s的捕集效率同样随着入 CFD-DEM.Powder Technol,2013,249:63 口风速的增加而减小,当v>0.4ms时,捕集效率 [14]Zhu H J.Fluid Analysis and Engineering Simulation of Fluent 12. 为0:单纤维对PM2.5的捕集效率随着粉尘粒径呈 Beijing:Tsinghua University Press,2011 现先增加后减小的规律. (朱红钧.Fluent12流体分析及工程仿其.北京:清华大学出版社, 2011) 参考文献 [15]Tripathy S K,Bhoja S K,Kumar C R,et al.A short review on hydraulic classification and its development in mineral industry. [1]Zhang Y.Eco-design of steel industry and policy options in China Powder Technol,2015.270:205 China's Popul Resour Environ,2012,22(7):162 [16]Eisentrager A,Vella D,Griffiths I M.Particle capture efficiency in (张雅.钢铁产业生态化设计与政策选择.中国人口·资源与环 a multi-wire model for high gradient magnetic separation.Appl 境,2012,22(7):162) Ph3Lei,2014,105(3):033508 [2]Xiong G L,Li S Q,Chen S,et al.Development of advanced [17]Zhao HL,Fu H M,Lei C L,et al.Effect of fiber's cross-sectional electrostatic precipitation technologies for reducing PM2s shape on fiber collection efficiency and pressure drop.J Donghua emissions from coal-fired power plants.Proc CSEE,2015,35(9): Univ Nat Sci,2016,42(1):86 2217 (赵洪亮,付海明,雷陈磊,等,纤维藏面形状对纤维捕集效率及 (熊桂龙,李水清,陈晟,等.增强PM,脱除的新型电除尘技术的 压力损失的影响.东华大学学报:自然科学版,2016,42(1):86) 发展.中国电机工程学报,2015,35(9):2217) [18]Wang F H,Tie Z X.Numerical simulation for high gradient [3]Qu Y,Qian X,Song HQ,et al.Machine-learning-based model and magnetic field located single magnetic medium in entrapping simulation analysis of PM2.5 concentration prediction in Beijing magnetism particles.Coal Prepar Technol,2012(2):20 Chin J Eng,2019,41(3):401 (王发辉,铁占续.高梯度磁场中单根磁介质捕集磁性微粒的数 (曲悦,钱旭,宋洪庆,等.基于机器学习的北京市PM2.5浓度预 值模拟.选煤技术,2012(2):20) 测模型及模拟分析.工程科学学报,2019,41(3):401) [19]Yang R Q.Investigation on Kinetic Characteristic of Magnetic [4]Gu C H.La S W.Li R.et al.Influence of fiber on filtration Fine Particles in High Gradient Magnetic Field [Dissertation] performance for PM2 s.C/ESC J,2014,65(6):2137 Nanjing:Southeast University,2006 (顾从汇,吕士武,李瑞,等.纤维对PM,过滤性能的影响.化工 (杨荣清.高梯度磁场中磁性可吸人颗粒物动力学特性研究学 学报,2014,65(6):2137) 位论文].南京:东南大学,2006) [5]Bao L,Musadiq M,Kijima T,et al.Influence of fibers on the dust [20]Xiong D H.Study on comparison between vertical and horizontal dislodgement efficiency of bag filters.Text Res J,2014,84(7) magnetic fields in pulsating high gradient magnetic separation. 764 Metal Mine,2004(10):24 [6]Yang MM,Li S Q,Yao Q.Mechanistic studies of initial (熊大和,脉动高梯度磁选垂直磁场与水平磁场对比研究.金属 deposition of fine adhesive particles on a fiber using discrete. 矿山,2004(10):24) element methods.Powder Technol,2013,248:44 [21]Sun Z Y.Magnetic Separation Theory.Changsha:Central South [7] Hosseini S A.Tafreshi H V.Modeling particle-loaded single fiber University Press,2007 efficiency and fiber drag using ANSYS-Fluent CFD code.Compu (孙仲元.磁选理论.长沙:中南大学出版社,2007) Fluids,2012,66:157 [22]Qian F P.Wang H G.Numerical analysis on particle capture [8] Huang S,Zhang X M,Tafu M,et al.Study on subway particle characteristics of fibrous filters with random structure.J Civil capture by ferromagnetic mesh filter in nonuniform magnetic field. Architect Environ Eng,2010,32(6):120 Sep Purif Technol,2015,156:642 (钱付平,王海刚.随机排列纤维过滤器颗粒捕集特性的数值研 [9]Ke C H,Shu S,Zhang H,et al.LBM-IBM-DEM modelling of 究.土木建筑与环境工程,2010,32(6):120) magnetic particles in a fluid.Powder Techmnol,2016,314:264 [23]Zhu H,Fu H M,Kang Y M.Numerical analysis of pressure drop [10]Zhao L,Li X L,Sun W Q,et al.Experimental study on bag and inertial collection efficiency of a single fiber.China Environ filtration enhanced by magnetic aggregation of fine particles from Sc,2017,37(4):1298 hot metal casting process.Powder Technol,2018,327:255 (朱辉,付海明,亢燕铭.单纤维过滤阻力与惯性捕集效率数值 [11]Baik S K.Ha D W,Kwon J M,et al.Magnetic force on a magnetic 分析.中国环境科学,2017,37(4):1298)粒的捕集效率随着入口风速的增加而减小,后趋 于稳定;当 B<0.03 T 时,磁性单纤维对 PM2.5 颗粒 的捕集效率随着入口风速的增加而减小. 磁性单 纤维对 PM2.5 的捕集随粉尘粒径的增加而增大,当磁 性纤维磁感应强度越大,颗粒随粒径增长率越小. χp (4)对于高梯度磁场(H=0.5 T,B=0.01~0.05 T, =0.025),单纤维对 PM2.5 的捕集效率同样随着入 口风速的增加而减小,当 v>0.4 m·s−1 时,捕集效率 为 0;单纤维对 PM2.5 的捕集效率随着粉尘粒径呈 现先增加后减小的规律. 参    考    文    献 Zhang Y. Eco-design of steel industry and policy options in China. China's Popul Resour Environ, 2012, 22(7): 162 (张雅. 钢铁产业生态化设计与政策选择. 中国人口•资源与环 境, 2012, 22(7):162 ) [1] Xiong G L, Li S Q, Chen S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants. Proc CSEE, 2015, 35(9): 2217 (熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的 发展. 中国电机工程学报, 2015, 35(9):2217 ) [2] Qu Y, Qian X, Song H Q, et al. Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing. Chin J Eng, 2019, 41(3): 401 (曲悦, 钱旭, 宋洪庆, 等. 基于机器学习的北京市PM2.5浓度预 测模型及模拟分析. 工程科学学报, 2019, 41(3):401 ) [3] Gu C H, Lü S W, Li R, et al. Influence of fiber on filtration performance for PM2.5. CIESC J, 2014, 65(6): 2137 (顾从汇, 吕士武, 李瑞, 等. 纤维对PM2.5过滤性能的影响. 化工 学报, 2014, 65(6):2137 ) [4] Bao L, Musadiq M, Kijima T, et al. Influence of fibers on the dust dislodgement efficiency of bag filters. Text Res J, 2014, 84(7): 764 [5] Yang M M, Li S Q, Yao Q. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete￾element methods. Powder Technol, 2013, 248: 44 [6] Hosseini S A, Tafreshi H V. Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS-Fluent CFD code. Comput Fluids, 2012, 66: 157 [7] Huang S, Zhang X M, Tafu M, et al. Study on subway particle capture by ferromagnetic mesh filter in nonuniform magnetic field. Sep Purif Technol, 2015, 156: 642 [8] Ke C H, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technol, 2016, 314: 264 [9] Zhao L, Li X L, Sun W Q, et al. Experimental study on bag filtration enhanced by magnetic aggregation of fine particles from hot metal casting process. Powder Technol, 2018, 327: 255 [10] [11] Baik S K, Ha D W, Kwon J M, et al. Magnetic force on a magnetic particle within a high gradient magnetic separator. Physica C, 2013, 484: 333 Zheng X Y, Wang Y H, Lu D F. Investigation of the particle capture of elliptic cross-sectional matrix for high gradient magnetic separation. Powder Technol, 2016, 297: 303 [12] Qian F P, Huang N J, Zhu X J, et al. Numerical study of the gas￾solid flow characteristic of fibrous media based on SEM using CFD-DEM. Powder Technol, 2013, 249: 63 [13] Zhu H J. Fluid Analysis and Engineering Simulation of Fluent 12. Beijing: Tsinghua University Press, 2011 (朱红钧. Fluent12流体分析及工程仿真. 北京: 清华大学出版社, 2011) [14] Tripathy S K, Bhoja S K, Kumar C R, et al. A short review on hydraulic classification and its development in mineral industry. Powder Technol, 2015, 270: 205 [15] Eisenträger A, Vella D, Griffiths I M. Particle capture efficiency in a multi-wire model for high gradient magnetic separation. Appl Phys Lett, 2014, 105(3): 033508 [16] Zhao H L, Fu H M, Lei C L, et al. Effect of fiber’s cross-sectional shape on fiber collection efficiency and pressure drop. J Donghua Univ Nat Sci, 2016, 42(1): 86 (赵洪亮, 付海明, 雷陈磊, 等. 纤维截面形状对纤维捕集效率及 压力损失的影响. 东华大学学报: 自然科学版, 2016, 42(1):86 ) [17] Wang F H, Tie Z X. Numerical simulation for high gradient magnetic field located single magnetic medium in entrapping magnetism particles. Coal Prepar Technol, 2012(2): 20 (王发辉, 铁占续. 高梯度磁场中单根磁介质捕集磁性微粒的数 值模拟. 选煤技术, 2012(2):20 ) [18] Yang R Q. Investigation on Kinetic Characteristic of Magnetic Fine Particles in High Gradient Magnetic Field [Dissertation]. Nanjing: Southeast University, 2006 (杨荣清. 高梯度磁场中磁性可吸入颗粒物动力学特性研究[学 位论文]. 南京: 东南大学, 2006) [19] Xiong D H. Study on comparison between vertical and horizontal magnetic fields in pulsating high gradient magnetic separation. Metal Mine, 2004(10): 24 (熊大和. 脉动高梯度磁选垂直磁场与水平磁场对比研究. 金属 矿山, 2004(10):24 ) [20] Sun Z Y. Magnetic Separation Theory. Changsha: Central South University Press, 2007 (孙仲元. 磁选理论. 长沙: 中南大学出版社, 2007) [21] Qian F P, Wang H G. Numerical analysis on particle capture characteristics of fibrous filters with random structure. J Civil Architect Environ Eng, 2010, 32(6): 120 (钱付平, 王海刚. 随机排列纤维过滤器颗粒捕集特性的数值研 究. 土木建筑与环境工程, 2010, 32(6):120 ) [22] Zhu H, Fu H M, Kang Y M. Numerical analysis of pressure drop and inertial collection efficiency of a single fiber. China Environ Sci, 2017, 37(4): 1298 (朱辉, 付海明, 亢燕铭. 单纤维过滤阻力与惯性捕集效率数值 分析. 中国环境科学, 2017, 37(4):1298 ) [23] · 162 · 工程科学学报,第 42 卷,第 2 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有