10 工程科学学报,第44卷,第X期 现钢铁行业碳中和.目前碳捕集成本较高,约为 (阮清华,白苗苗.我国长流程炼钢与短流程炼钢成木比较.中 400~500¥tC02,占CCUS总成本的60%~70%, 国钢铁业,2019(10):58) 其商业可行性很大程度取决于政府制定的碳排放 [11]Wang X J.Technological progress of EAF steelmaking in China. Iron Steel,2019,54(8):1 税碳和交易价格(2021年国内碳交易市场每吨二 (王新江.中国电炉炼钢的技术进步.钢铁,2019,54(8):1) 氧化碳的开市价格约为50元).当CCUS的技术、 [12]Jiang Z H,Yao C L.Zhu H C.et al.Technology development 资金和成本障碍被克服后才可以实现钢铁行业真 trend in electric arc furnace steelmaking.Iron Steel,2020,55(7): 正的碳中和 1 (姜周华,姚聪林,朱红春,等.电弧炉炼钢技术的发展趋势.钢 参考文献 铁,2020,55(7):1) [1]National Bureau of Statistics.Statistical communique of the [13]Li B.Fundamental Study on the Smelting High-Purity Iron and People's Republic of China on the 2020 national economic and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation].Beijing:University of Science and social development.China Stat,2021(3):8 (国家统计局.中华人民共和国2020年国民经济和社会发展统 Technology Beijing,2020 (李彬.基于氢气直接还原铁治炼高纯铁和高纯轴承钢的基础 计公报.中国统计,2021(3):8) 研究学位论文].北京:北京科技大学,2020) [2]Bui M,Adjiman C S,Bardow A,et al.Carbon capture and storage [14]Zhou X.Overview and development analysis of direct reduction (CCS):The way forward.Energy Environ Sci,2018,11(5):1062 [3]Zhang X Y,Jiao K X,Zhang J L,et al.A review on low carbon process.Metall Econ Manage,2017(4):53 (周翔.直接还原工艺综述及发展分析.治金经济与管理, emissions projects of steel industry in the World.J Clean Prod. 2017(4):53) 2021,306:127259 [15]Song Z,Li X S,Zha C H.Development status and trend of direct [4]Quader M A,Ahmed S,Ghazilla R A R,et al.A comprehensive reduction iron technology in my country.China Steel Focus, review on energy efficient CO,breakthrough technologies for 2020(16):22 sustainable green iron and steel manufacturing.Renewable (宋赞,李相帅,查春和.我国直接还原铁工艺的发展现状及趋 Sustainable Energy Rev,2015,50:594 势.冶金管理,2020(16):22) [5]Yan J J.Progress and future of ultra-low CO,steel making [16]Shi Y.The world's direct reduced iron production exceeded 100 program.China Metall,2017,27(2):6 million tons for the first time.China Steel Focus,2020(18):30 (严珺洁.超低二氧化碳排放炼钢项目的进展与未来.中国治金, (石禹,世界直接还原铁产量首次超过亿吨.治金管理 2017,27(2):6) 2020(18):30) [6]Wang G,Wang J S,Zuo H B,et al.Effect of blast furnace gas [17]Ying Z W,Chu M S,Tang J,et al.Current situation and future recycling with hydrogen injection on low carbon development of adaptability analysis of non-blast furnace ironmaking process Chinese ironmaking.China Metall,2019,29(10):1 Hebei Metall,2019(6):1 (王广,王静松,左海滨,等.高炉煤气循环耦合富氢对中国炼铁 (应自伟,储满生,唐珏,等.非高炉炼铁工艺现状及未来适应性 低碳发展的意义.中国治金,2019,29(10):1) 分析.河北治金,2019(6):1) [7]Xue Q G,Yang F,Zhang XX,et al.Development of oxygen blast [18]Ren L,Zhou S,Peng T D,et al.A review of COz emissions fumace and its research progress in Beijing University of science reduction technologies and low-carbon development in the iron and technology.Chin J Eng,2021,43(12):1577 and steel industry focusing on China.Renewable Sustainable (薛庆国,杨帆,张欣欣,等.氧气高炉的发展历程及其在北京科 Energy Rey,2021,143:110846 技大学的研究进展.工程科学学报,2021,43(12):1577) [19]Tang J,Chu M S,Li F,et al.Development status and future trend [8]Yao CL,Zhu HC,Jiang Z H,et al.CO2 emissions calculation and of hydrogen metallurgy in China.Hebei Metall,2020(8):1 analysis of electric arc furnace with continuous feeding of only (唐压,储满生,李峰,等.我国氢冶金发展现状及未来趋势.河 scrap.J Mater Metall,2020,19(4):259 北治金,2020(8):1) (姚聪林,朱红春,姜周华,等.全废钢连续加料电弧炉短流程碳 [20]Yilmaz C,Wendelstorf J,Turek T.Modeling and simulation of 排放计算及分析.材料与冶金学报,2020,19(4):259) hydrogen injection into a blast furnace to reduce carbon dioxide [9]Cheng W.The EAF market and the continuous casting and rolling emissions.J Clean Prod,2017,154:488 of long products.Metall Econ Manage,2020(1):22 [21]Zhao Y,Wang Y B,Wang T H.Research progress on the (程威.中国电炉市场与长材连铸连轧.冶金经济与管理, absorption of carbon dioxide by organic amine method.Recycl 2020(1):22) Resour Circ Econ,2020,13(7):26 [10]Ruan Q H,Bai MM.Comparison of my country's long-process (赵毅,王永斌,王添颗.有机胺法吸收二氧化碳的研究进展.再 steelmaking and short-process steelmaking costs.China Steel, 生资源与循环经济,2020,13(7):26) 2019(10):58 [22]Li J G,Li JZ,Qin B H.Simulation of carbon dioxide capture and现钢铁行业碳中和. 目前碳捕集成本较高,约为 400~500 ¥·t−1 CO2,占 CCUS 总成本的 60%~70%, 其商业可行性很大程度取决于政府制定的碳排放 税碳和交易价格(2021 年国内碳交易市场每吨二 氧化碳的开市价格约为 50 元). 当 CCUS 的技术、 资金和成本障碍被克服后才可以实现钢铁行业真 正的碳中和. 参 考 文 献 National Bureau of Statistics. Statistical communiqué of the People's Republic of China on the 2020 national economic and social development. China Stat, 2021(3): 8 (国家统计局. 中华人民共和国2020年国民经济和社会发展统 计公报. 中国统计, 2021(3):8) [1] Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): The way forward. Energy Environ Sci, 2018, 11(5): 1062 [2] Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 [3] Quader M A, Ahmed S, Ghazilla R A R, et al. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable Sustainable Energy Rev, 2015, 50: 594 [4] Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6 (严珺洁. 超低二氧化碳排放炼钢项目的进展与未来. 中国冶金, 2017, 27(2):6) [5] Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1 (王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁 低碳发展的意义. 中国冶金, 2019, 29(10):1) [6] Xue Q G, Yang F, Zhang X X, et al. Development of oxygen blast furnace and its research progress in Beijing University of science and technology. Chin J Eng, 2021, 43(12): 1577 (薛庆国, 杨帆, 张欣欣, 等. 氧气高炉的发展历程及其在北京科 技大学的研究进展. 工程科学学报, 2021, 43(12):1577) [7] Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259 (姚聪林, 朱红春, 姜周华, 等. 全废钢连续加料电弧炉短流程碳 排放计算及分析. 材料与冶金学报, 2020, 19(4):259) [8] Cheng W. The EAF market and the continuous casting and rolling of long products. Metall Econ Manage, 2020(1): 22 (程威. 中国电炉市场与长材连铸连轧. 冶金经济与管理, 2020(1):22) [9] Ruan Q H, Bai M M. Comparison of my country's long-process steelmaking and short-process steelmaking costs. China Steel, 2019(10): 58 [10] (阮清华, 白苗苗. 我国长流程炼钢与短流程炼钢成本比较. 中 国钢铁业, 2019(10):58) Wang X J. Technological progress of EAF steelmaking in China. Iron Steel, 2019, 54(8): 1 (王新江. 中国电炉炼钢的技术进步. 钢铁, 2019, 54(8):1) [11] Jiang Z H, Yao C L, Zhu H C, et al. Technology development trend in electric arc furnace steelmaking. Iron Steel, 2020, 55(7): 1 (姜周华, 姚聪林, 朱红春, 等. 电弧炉炼钢技术的发展趋势. 钢 铁, 2020, 55(7):1) [12] Li B. Fundamental Study on the Smelting High-Purity Iron and High-Purity Bearing Steel Using Direct Reduced Iron Prepared by Hydrogen [Dissertation]. Beijing: University of Science and Technology Beijing, 2020 ( 李彬. 基于氢气直接还原铁冶炼高纯铁和高纯轴承钢的基础 研究[学位论文]. 北京: 北京科技大学, 2020) [13] Zhou X. Overview and development analysis of direct reduction process. Metall Econ Manage, 2017(4): 53 (周翔. 直接还原工艺综述及发展分析. 冶金经济与管理, 2017(4):53) [14] Song Z, Li X S, Zha C H. Development status and trend of direct reduction iron technology in my country. China Steel Focus, 2020(16): 22 (宋赞, 李相帅, 查春和. 我国直接还原铁工艺的发展现状及趋 势. 冶金管理, 2020(16):22) [15] Shi Y. The world's direct reduced iron production exceeded 100 million tons for the first time. China Steel Focus, 2020(18): 30 ( 石 禹 . 世 界 直 接 还 原 铁 产 量 首 次 超 过 亿 吨 . 冶 金 管 理 , 2020(18):30) [16] Ying Z W, Chu M S, Tang J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process. Hebei Metall, 2019(6): 1 (应自伟, 储满生, 唐珏, 等. 非高炉炼铁工艺现状及未来适应性 分析. 河北冶金, 2019(6):1) [17] Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable Sustainable Energy Rev, 2021, 143: 110846 [18] Tang J, Chu M S, Li F, et al. Development status and future trend of hydrogen metallurgy in China. Hebei Metall, 2020(8): 1 (唐珏, 储满生, 李峰, 等. 我国氢冶金发展现状及未来趋势. 河 北冶金, 2020(8):1) [19] Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions. J Clean Prod, 2017, 154: 488 [20] Zhao Y, Wang Y B, Wang T H. Research progress on the absorption of carbon dioxide by organic amine method. Recycl Resour Circ Econ, 2020, 13(7): 26 (赵毅, 王永斌, 王添颢. 有机胺法吸收二氧化碳的研究进展. 再 生资源与循环经济, 2020, 13(7):26) [21] [22] Li J G, Li J Z, Qin B H. Simulation of carbon dioxide capture and · 10 · 工程科学学报,第 44 卷,第 X 期