The rsa digital signature Let n=p, where p and g are primes Let P=A=Z. and define K=((n,p, q, e, d): ed=1 mod f(n)) For each key K=(n, p, g, e, d), define sig(m)=md mod n and verk(m, y)=true ye= m mod n where(mny)∈Zn Public key =(n,e), Private key(n, d)19 The RSA digital signature Let n = pq, where p and q are primes. Let P = A = Zn , and define K = {(n,p,q,e,d) : ed = 1 mod f(n) }. For each key K = (n,p,q,e,d), define sigK(m) = md mod n and verK(m,y) = true ye = m mod n, where (m,y) Zn . Public key = (n,e), Private key (n,d).