正在加载图片...
C. Kaya et al. /Journal of the European Ceramic Society 29(2009)1631-1639 References fiber orientation at 1200 degrees C. Comp. Sci. TechnoL, 2008, 6 1588-1595 1.Chawla,K.K, Ceramic Matrix Composites(2nd ed. ) Kluwer Academic 11. Boccaccini, A. R, Kaya, C. and Chawla, K. K Use of electrophoretic Press, Boston, USA. 2003. deposition in the processing of fibre reinforced ceramic and glass matrix 2. Kaya, C, Butler, E. G, Selcuk, A Boccaccini, A.R. and Lewis, M.H., Mul- mposites.A review Compos. Part A, 2001, 32, 997-1006 lite(NextelTM 720) fibre-reinforced mullite matrix composites exhibiting 12. Kaya, C and Butler, E.G. IRC Intemal Report on Development of CMC. favourable thermomechanical properties. J. Eur Ceram. Soc., 2002, 22(13), The University of Birmingham, February 2002 2333-2342. 13. Raj, B, Jayakumar, T and Thavasimuthu, M, Practical Nondestructive 3. Chawla, K. K, Coffin, C and Xu, Z.R. Interface engineering in oxide Testing. Woodhead Publishing, 2002, Pp 100-105 fibre/oxide matrix composites. Int Mater Rev., 2000, 45, 165-189 14. Kaya, C, Kaya, F. and Mori, H, Non-destructive damage evaluation of 4. Lewis, M.H., Tye, E, Butler, E. G and Doleman, P. A, Oxide CMCs: cyclic-fatigued alumina fiber-reinforced mullite ceramic terphase synthesis and novel fibre development. J. Eur. Ceram. So using forced resonance and acoustic emission techniques. J. Mater. Sci. Lett., 20,639644 2002.21 5. Warren, R and Deng, S, Continuous fibre reinforced ceramic composites 15. Kaya, C and Mori. H. Damage as nt of alumina fibre. for very high temperatures. Silicates Ind, 1996, 5(6), 96-107. reinforced mullite ceramic matrix composites subjected to cyclic fatigue 6. Kanka, B and Schneider, H, Aluminosilicate fiber/mullite matrix compos- at ambient and elevated temperatures. J. Eur Ceram. Soc., 2002, 22(4). ites with favorable high-temperature properties. J. Eur. Ceram. Soc., 2000 447-452. 20,619-623 16. Kaya, F, Damage assessment of oxide fibre reinforced oxide ceram 7. Kaya, C, Gu, X, Al-Dawery, I and Butler, E. G, Microstructural develop- matrix composites using acoustic emission. Ceram. Inter, 2007, 33, ment of woven mullite fibre-reinforced mullite ceramic matrix composites 279-284 by infiltration processing. Sci. TechnoL. Adv. Mater., 2002, 3(1), 35-44. 17. Kaya, F and Bowen, P, Effect of increased interfacial strength on the fatigue 8. Kaya, C, He, J. Y, Gu, X and Butler, E. G, Nanostructured ceramic pow crack growth resistance and crack opening displacement of B Ti 21S/SCS 6 lers by hydrothermal synthesis and their applications. Micropor. Mesopor. composites. Mater. Sci. Eng. A, 2008, 476, 301-307. Mater,2002,54(1-2),37-49 18. Kaya, F, Bowen, P and Liu, J, In-situ observation of crack opening dis- 9. Stoll, E, Mahr, P, Kruger, H G. Kern, H, Thomas, B J C and boccacci placement(COD)in a metastable B titanium composites. J Mater. So A.R. Fabrication technologies for oxide-oxide nic matrx compos- 2008,43,270-280 ites based on electrophoretic deposition. J. Eur: Ceram Soc., 2006, 26(9), 19. Boccaccini, A.R, Kern, H. and Dlouhy, I, Determining the fracture resistance of fibre reinforced glass matrix composites by means of the Chevron-Notched Flexural Technique. Mater. Sci. Eng. A, 2001, 308 ior of Nextel(TM) 720Valumina ceramic composite with +/-45 degre l11-117C. Kaya et al. / Journal of the European Ceramic Society 29 (2009) 1631–1639 1639 References 1. Chawla, K. K., Ceramic Matrix Composites (2nd ed.). Kluwer Academic Press, Boston, USA, 2003. 2. Kaya, C., Butler, E. G., Selcuk, A., Boccaccini, A. R. and Lewis, M. H., Mul￾lite (NextelTM 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties. J. Eur. Ceram. Soc., 2002, 22(13), 2333–2342. 3. Chawla, K. K., Coffin, C. and Xu, Z. R., Interface engineering in oxide fibre/oxide matrix composites. Int. Mater. Rev., 2000, 45, 165–189. 4. Lewis, M. H., Tye, E., Butler, E. G. and Doleman, P. A., Oxide CMCs: interphase synthesis and novel fibre development. J. Eur. Ceram. Soc., 2000, 20, 639644. 5. Warren, R. and Deng, S., Continuous fibre reinforced ceramic composites for very high temperatures. Silicates Ind., 1996, 5(6), 96–107. 6. Kanka, B. and Schneider, H., Aluminosilicate fiber/mullite matrix compos￾ites with favorable high-temperature properties. J. Eur. Ceram. Soc., 2000, 20, 619–623. 7. Kaya, C., Gu, X., Al-Dawery, I. and Butler, E. G., Microstructural develop￾ment of woven mullite fibre-reinforced mullite ceramic matrix composites by infiltration processing. Sci. Technol. Adv. Mater., 2002, 3(1), 35–44. 8. Kaya, C., He, J. Y., Gu, X. and Butler, E. G., Nanostructured ceramic pow￾ders by hydrothermal synthesis and their applications. Micropor. Mesopor. Mater., 2002, 54(1–2), 37–49. 9. Stoll, E., Mahr, P., Kruger, H. G., Kern, H., Thomas, B. J. C. and Boccaccini, A. R., Fabrication technologies for oxide-oxide ceramic matrix compos￾ites based on electrophoretic deposition. J. Eur. Ceram. Soc., 2006, 26(9), 1567–1576. 10. Ruggles-Wrenn, M. B., Siegert, G. T. and Baek, S. S., Creep behav￾ior of Nextel(TM) 720/alumina ceramic composite with +/− 45 degrees fiber orientation at 1200 degrees C. Comp. Sci. Technol., 2008, 6, 1588–1595. 11. Boccaccini, A. R., Kaya, C. and Chawla, K. K., Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites. A review. Compos. Part A, 2001, 32, 997–1006. 12. Kaya, C. and Butler, E. G., IRC Internal Report on Development of CMC. The University of Birmingham, February 2002. 13. Raj, B., Jayakumar, T. and Thavasimuthu, M., Practical Nondestructive Testing. Woodhead Publishing, 2002, pp. 100–105. 14. Kaya, C., Kaya, F. and Mori, H., Non-destructive damage evaluation of cyclic-fatigued alumina fiber-reinforced mullite ceramic matrix composites using forced resonance and acoustic emission techniques. J. Mater. Sci. Lett., 2002, 21, 1333–1335. 15. Kaya, C., Kaya, F. and Mori, H., Damage assessment of alumina fibre￾reinforced mullite ceramic matrix composites subjected to cyclic fatigue at ambient and elevated temperatures. J. Eur. Ceram. Soc., 2002, 22(4), 447–452. 16. Kaya, F., Damage assessment of oxide fibre reinforced oxide ceramic matrix composites using acoustic emission. Ceram. Inter., 2007, 33, 279–284. 17. Kaya, F. and Bowen, P., Effect of increased interfacial strength on the fatigue crack growth resistance and crack opening displacement of  Ti 21S/SCS 6 composites. Mater. Sci. Eng. A., 2008, 476, 301–307. 18. Kaya, F., Bowen, P. and Liu, J., In-situ observation of crack opening dis￾placement (COD) in a metastable  titanium composites. J. Mater. Sci., 2008, 43, 270–280. 19. Boccaccini, A. R., Kern, H. and Dlouhy, I., Determining the fracture resistance of fibre reinforced glass matrix composites by means of the Chevron-Notched Flexural Technique. Mater. Sci. Eng. A, 2001, 308, 111–117
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有