正在加载图片...
Directed melt oxidation and nitridation in aluminium alloys: B. S. S. Daniel and V.S. R. Murthy self-sustainment of the process, addition of highly diffu kinetics of aluminium alloys nitridation. In Proceedings of sive elements(along with silicon)is essential. Compared Ceramic and Metal Matrix Composites, Ed. Mostarhaci Pergamon Press, New York, 1989, 302-311 to oxidation, nitridation is more sensitive to reaction 20 Scholz. H. and Greil. p nitridation reactions of molten AH-Mg temperature and partial pressure of the reactant gas Si)alloys, J. Mat. Sci. 1991. 26, 669-677 Further, in nitridation, a wide range of metal and 21 Scholz, H. and Greil, P. Synthesis of high purity aIN by nitrida- eramic combinations(MMC and CMC) is possible. 22 Manor, E. et al. Microstructure evolution of SiC/ALO/A! alloy While extensive studies have been carried out on t omposite formation via the DiMOX process(with and 1993,76,1771787 23 Breval. E. ef al. Structure of aluminum nitridealuminum and without filler materials), only limited research has been aluminium oxide/aluminum composites produced by the directed undertaken on nitridation. Although Al,/Al and oxidation of aluminum. J. Am. Ceram. Soc. 1993. 76, 1865 AIN/Al composites exhibit similar mechanical proper- 24 Antolin, S et al. Formation of Al; O metal composites ties, the moisture sensitivity of AIn restricts the appli directed oxidation of molten aluminum-magnesium-Si alloys: Part 1, Microstructural development. J. Am. Cerum cation of AIN/Al composite material 992.75.147-154 25 Aghajanian, M.K. et al. Fabrication of metal matrix composites by a pressureless infiltration technique. J. Mat. Sci. 1991. 26 Acknowledgements 447-454 The authors are grateful to the board of research in Nagelberg, A.S. ef al. Formation of Al,O metal com the directed oxidation of molten aluminum-magnesium Nuclear Sciences(BRNS)for the research grant no alloys: Part Il, Growth kinetics. J. Am. Ceram. So 34/4/93-G 455462 27 Murthy. V.S.R. and Rao, B S Microstructural development in the directed melt oxidized(DIMOX)Al-Mg-Si alloys. J Mater References Sct.1995、30.3091-309 I Clyne, T.W. and Withers, P J. An Introduction to Metal Matrix 8 Schmaizried. H. and Laqua, w. Multicomponent oxides in Everell, R. K, and Arsenault,R. J. Me(us uva composites: 29 Kagawa, Y et al. Directed nitridation of liquid aluminium alloy 3 K. K. Chawla, Composite materials: Science and Engineering Growth process and modeling. Ceram. Eng. Sci. Proc. 1993. 14 inger-Verlag, New York. 1987 4 Koczak, M.J. and Premkumar, M.K. Emerging technologies for 30 Rhee. S. K. Wetting of ceramics by liquid aluminium. J. Am u production of MMCs. J Metals 1993, 45 5 Premkumar, M. K and Chu, M. G. Synthesis of TiC particulates 31 Dhandapani, s. P. et ul. Growth and microstructure of Sic preforms. Acta Metall. Mater 1994, 42, 649-656 6 Koczak M ]. and Kumar, K S. US Patent No. 4808372(March 32 Claussen, N and Urquhart, A W Directed metal oxidation In Concise Encyclopedia of Advanced Ce ramic Materials. Ed. Brook 7 Newkirk, M.S. et al Preparation of L dixide d radia Press, Oxford, 1992, pp. 124-129 composites: Matrix formation by the ation of 33 Fareed, A.S. et al. Development of BN/SiC duplex fibre coatings molten metals. Ceram Eng Sci Proc 1987.8.87 8 Newkirk, M.S.et al. Formation of Lanxide ceramic composite 81-89 34 Muralidhar, H. R. et al. Growth of Al, 0 /Al composites from 9 Creber. D. K. er ul owth by nitridation of Al-Zn alloys, Personal communication aluminium alloys, Ceran Sci Proc.1988,9,975-982 35 Martins, G. P. et al. Modeling of infiltration kinetics for liquid process for the fabri- metal processing of composites. Metall. Trans. 1988, 19B, 95-101 cation of metal matrix composites. SAMPE Quarterly 1989, 20 36 Hilg, W.B. Melt infiltration approach to ceramic matrix mposites. J. Am. Ceram. Soc. 1988, 71, C96-C99 1 Nageiherg, A. s Growth kinetics of AL,O, /metal ites 37 Toy, C and Scott, w. D Ceramic-metal composite produced by from a complex aluminium alloy. Solid State Ionics 1989, 32/33, melt infiltration. J. Am, Ceram. Soc. 1990. 73 97-101 783-788 38 Groat, E. A and Mroz, T. J. Aquous slip casting of stabilized 12 Breval, E. et ul. Mici sTructure of AlOyAl composites made by AIN powders. J. Mat Sci. 1994, 73, 75-78 directed oxidation of aluminium. J. Am. Ceram. Soc. 1990, 73 69 Lewis Ill, D. In-situ reinforcement of metal-matrix composites 610-2614 In Metal Matrix Composites: Processing and interfaces, Eds 3 Salas, O et al Nucleation and growth of Al, O, metal composite and Arsenault. R. J. Academic Press. London by oxidation of aluminium alloys. J. Mat. Res. 1991, 6 1991,pp.12l-150 1964-198 40 Andersson, C A and Aghajanian, M K. The fracture toughen 14 Vlach, K. C. et al, a thermogravimetric study of the oxidative ing mechanism of ceramic composites containing adherent ductile of AlO Al alloy composites. J. Mat. Res. 1991, 6. metal phases. Ceram. Eng. Sci. Proc. 1988,9, 621-626 +1 Landini, D. J. and Lesher, H. D. Ceramic erg, A.S. Observation on the role of mg inserts. In Proceedings of Third international Symposium on directed oxidation of Al-Mg-Si alloys. J. Mat. Res. 1992, 7 Ceramic Materials and Components for Engines. Ed. tenney. V J,, Las Vagas, 1988, pp. 1536-1551 16 Xiao, P and Derby, B. Alumin 42 Weinstein, J and Rossing, B. Application of a new ceramic/metal by the directed oxidation of using magnesia as a Irface dopant.JAm. Ceram. 77.1761-1770 nents. In High Performance Composites for the 1990's, Eds Da 17 Xiao, P and Derby, B. Alumina/aluminum composites formed S.K., Ballard, C. P. and Marikar. f, The Minerals. Metals and by the directed oxidation of aluminum hydroxide Materials Society, UK, 1990 as a surface dopant. J. Am. Ceram Soc. 7-1776 43 Schrioky, G. H et al. Ceramic composites for gas turbine engines Engineering 1992. 3, 247-259 Aeroengine Congress and Exposition, Toronto, Canada.4-8 19 LeHuy. H. and Dallarie, S. Effects of Si and Mg dopants on the June 1989 Materials Design Volume 16 Number 3 1995 161Dhcfed melt oxidation and n&id&ion in aluminium alloys: B. S. S. Daniel and V. S. R. Murthy self-sustainment of the process, addition of highly diffu￾sive elements (along with silicon) is essential. Compared to oxidation, nitridation is more sensitive to reaction temperature and partial pressure of the reactant gas. Further, in nitridation~ a wide range of metal and ceramic combinations (MMC and CMC) is possible. While extensive studies have been carried out on the composite formation via the DIMOX process (with and without filler materials), only limited research has been undertaken on n~tridation. Although Al,OJAJ and AlN/Al composites exhibit similar mechanical proper￾ties, the moisture sensitivity of AIN restricts the appli￾cation of AlNiAl composite material. Acknowledgements The authors are grateful to the Board of Research in Nuclear Sciences (BRNS) for the research grant no. 34/4/93-c. References 1 2 3 4 5 6 7 8 9 10 II 12 13 I4 15 16 I7 18 19 Clyne, T. W. and Withers, P. J. An Introdl~~tfun to Metuf Matrix C~~?~u.s~fe.s, Cambridge Universjty Press, Cambridge, 1993. Everett, R. K. and Arsenault, R. J. Metul Mutrix Composites: Pracessing und Inte$uces, Academic Press, New York, 199 I. K. K. Chawla, Cumposite muteriufs: Science und Engineering, Springer-Verlag, New York. 1987 Koczak, M. J. and Premkumar, M. K. Emerging technologies for the in-situ production of MMC’s. J. Metufs 1993, 45, 44-48 Premkumar. M. K. and Chu. M. G. Svnthesis of Tic narticulates and their segregation during solidification in in-situ processed AI-Tic composites. Metaff. Truns. 1993, 24A, 2358-2362. Koczak. M. J. and Kumar, K. S. US Patent No. 4808372 (March 1989) Newkirk, M. S. et ul. Preparation of Lanxide ceramic matrix composites: Matrix formation by the directed oxidation of molten metals. Cerum. ,!%g. Sci. Proc. 1987, 8, 879-885 Newkirk, M. S. et ul. Formation of Lanxide ceramic composite materials. J: Mat. Res. 1986, 1, 81-89 Creber, D. K. et ai. AIN composite growth by nitridation of aluminium alloys. Ceram. Eng. Sci. Proc. 1988, 9, 975-982 Aghajanian, M. K. et al. A new infiltration process for the fabri￾cation of metal matrix composites. SAMPE Quarterly 1989, 20, 43-46 Nagelberg, A. S. Growth kinetics of Al,O,/metal composites from a complex aluminium alloy. S&i& State IO&S 1989, 32133, 783-788 Breval, E. er uI. Microstructure of Al,C$‘AI composites made by directed oxidation of aiuminium. J. Am. Ceram. Sot. 1990. 73. ~ 2610-2614 Salas, 0. et ul. Nucleation and growth of Al,O,imetal composites by oxidation of aluminium alloys. J. h&t. Res. 1991. 6, 1964-1981 Vlach, K. C. rr rrl., A thermogravimetric study of the oxidative growth of Al,O,IAl alloy composites. .I. &fur. Res. 1931, 6, 1982-1995 Nagelberg, A. S. Observation on the role of Mg and Si in the directed oxidation of Al-Mg-Si alloys. J. Mut. Res. 1992, 7, 265--268 Xiao, I’. and Derby. B. Alumin~aluminum composites formed by the directed oxidation of aluminum using magnesia as a surface dopant. J. &n. Cerum. Sot. 1994,77, 1761-1770 Xiao, P. and Derby, B. Alumina/aluminum composites formed by the directed oxidation of aluminum using sodium hydroxide as a surface dopaut. J. Am. Cerum. SOE. 1994, 77, 1771-1776 Jayaram, V. Ceramic composites by melt oxidation, Materials Engineering 1992,3,247-259 LeHuy. H. and Daltarie, S. Effects of Si and Mg dopants on the 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3.5 36 37 38 39 40 41 42 43 kinetics of aluminium alloys nitridation. In Proceedings of Ceramic and Metaf Matrix Composites, Ed. Mostarhaci. H., Pergamon Press, New York, 1989, pp. 302-311 Scholz, H. and Greil, P. Nitridation reactions of molten Al-(Mg, Si) alloys, J. Mat. Sci. 1991. 26, 669-677 Scholz, H. and Greil, P. Synthesis of high purity AIN by nitrida￾tion of Li-doped Al-melt. J. Euro. Cerum. Sot. 1990,6, 237-242 Manor, E. et ul. Microstructure evolution of SiC/Al,O,IAI alloy composites produced by melt oxidation. J. Am. Cerum. Sot. 1993.76, 1777-1787 Breval, E. er til. Structure of aluminum nitride/aluminum and aluminium oxide/aluminum composites produced by the directed oxidation of alumjnnm. 3. Am. Cerum. SK 1993. 76. 1865-1868 Antolin, S. et al. Formation of AlzO,/metal composites by the directed oxidation of molten aluminum.-magnesium-silicon alloys: Part I, Microstructural development. J’. Am. C.&m. Sot. f992.75. 147-154 Aghajanian, M. K. et ul. Fabrication of metal matrix composites by a pressureless infiltration technique. J. Mut. Sci. 1991. 26, 447-454 Nagelberg, A. S. et ul. Formation of AI,OJmetal composites by the directed oxidation of molten aluminum-magnesium-silicon alloys: Part II, Growth kinetics. J. .4m. Cerum. Sot. 1992, 75. 455-462 Murthy. V. S. R. and Rao, B. S. Microstructural development in the directed melt oxidized (DIMOX) Al-Mg-Si alloys. J. Mater. sci. 1995.30. 3091-3097 Schmaizried. H. and Laqua, W. Multicomponent oxides in oxygen potential gradients. ~~iduff~n 01 ~etfffs 1981, IS, 339-323 Kagawa, Y. ef ul Directed nitridation of liquid aluminium alloy: Growth process and modeling. Ceram. Eng. Sci. Proc. 1993, 14. 776-78 I Rhee. S. K. Wetting of ceramics by liquid aluminium. J. &I. Ctrrm. SW. 1970, 53, 386-389 Dhandapani, S. P. et ul. Growth and microstructure of A&O,-Sic-Si(A1) composites prepared by reactive infiltration of SiC preforms. Acfu ~~~ffl~. Muter. 1994, 42, 649656 Claussen, N. and Urquhart, A. W. Directed metal oxidation. In Concise Erzcyclo~diff crf Advanced Ceramic Muteri~ls. Ed. Brook, R. J., Pergamon Press, Oxford, 1992, pp. 124-129 Fareed, A. S. et al. Development of BN/SiC duplex fibre coatings for fibre reinforced alumina matrix composites fabricated by direct melt oxidation. Cerum. Eng. Sci. Proc. 1993, 14, 794-801 Mural~dhar, H. R. et ul. Growth of AI,OJAl composites from Al-Zn alloys, Personal communication Martins, G. P. et ul. Modeling of infiltration kinetics for liquid metai processing of composites. ~e~u~~. Truns. 1988, 193,95-l0f Hillig, W. B. Melt infiltration approach to ceramic matrix composites. J. Am. Cerum. Sot. 1988. 71, C96-C99 Toy, C. and Scott, W. D. Ceramic-metal composite produced by melt infiltration. J. Am. Cerum. Sot. 1990, 73, 97-101 Groat, E. A. and Mroz, 1. J. Aquous slip casting of stabilized AlN powders. J. &fut. Sci. 1994,73, 75-78 Lewis 111, D. In-situ reinforcement of metal-matrix composites. In Metal Matrix Composites: Processing and Interfrrces. Eds Everett, R. K. and Arsenault. R. J. Academic Press, London, 1991, pp. 121-150 Andersson, C. A. and Aghajanian, M. K. The fracture toughen￾ing mechanism of ceramic composites containing adherent ductile metal phases. Cerum. Eng. Sci. Proc. 1988,9, 621-626 Landini, D. J. and Lesher, H. D. Ceramic composite valve seat inserts. In Proceedings of Third ~~tern~tio~ai Symp~sfum on Ceramic Muteriafs and Components for Engines, Ed, Tennery, V. J., Las Vagas, 1988, pp. 1536-1551 Weinstein, J. and Rossing, 3. Application of a new cerami~metal composite technology to form net shape wear resistant compo￾nents. In High Per~orm~~~e Comp~.~ites for the 199&s, Eds Das, S. K., Ballard, C. P. and Mmrikar, F., The Minerals, Metals and Materials Society, UK, 1990, pp. 339-360 Schrioky, G. H. et ul. Ceramic composites for gas turbine engines via a new process, Paper presented at Gas Turbine and Aeroengine Congress and Exposition, Toronto, Canada. 4-8 June 1989 Materials & Design Volume I6 Number 3 1995 161
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有