正在加载图片...
B. Wilshire, M.R. Bache/ Journal of the European Ceramic Sociery 27(2007)4603-4611 4611 7. Wilshire. B. and Carreno F. Deformation and sses during 18. Yun, H M. and DiCarlo, J. A, Thermo-mechanical behaviour of advanced eramic-matrix composites J. Eur SiC fibre multi-filament tows Ceram. Eng. Sci. Proc., 1996, 17A, 61 ceran.Soc.,2000,20,463 19. Heredia, F E, Evans, A G. and Andersson, C. A, Tensile and shear proper- 8. wilshire, B, Creep property comparisons for ceramic-fibre-reinforced es of continuous fibre-reinforced SiC/Al203 processed by melt oxidation. ceramic-matrix composites. J. Eur Ceram Soc., 2002, 22, 1329 JAm. Ceran.Soc.,1995,78,2790. 9. Zhu, S, Mizuno, M, Kagawa, Y, Cao, J, Nagano, Y and Kaya, H, Creep 20. Goodall, I. N, Cockcroft, R. D. H. and Chubb, E J, An approximate and fatigue behaviour of SiC fibre reinforced SiC composite at high tem- description of the creep rupture of structures. Int J. Mech. Sci., 1975, 17, peratures. Mater. Sci. Eng. A, 1997, 225, 69 351. 10. Zhu, S, Mizuno, M, Nagano, Y. Cao, J, Kagawa, Y and Kaya, H, Creep 21. Wilshire, B and Burt, H, Tertiary creep of metals and alloys. Z Metallkd and fatigue behaviour of an enhanced SiC-SiC composite at high tempera 2005,96,552 tures.J. Am. Cera. Soc., 1998, 81, 2269 22. Leckie, F. A and Hayhurst, D. R, Constitutive equations for creep rupture 11. Zhu, S, Mizuno, M, Kagawa, Y, Cao, J, Nagano, Y and Kaya, H Acta Meta.,1977,25,1059 Creep and fatigue behaviour in Hi-Nicalon-fibre-reinforced silicon car- 23. Botier, G Vicens, J and Chermant, J L, Understanding the creep behaviour high temperatures. J. Am. Ceram. Soc. 1999, 82, 117. f a 2.5D Cr-SiC composite I Morphology and microstructure of the as- 12. Bodet, R, Bourrat, X, Lamon, J and Naslain, R, Tensile creep behaviour received material. Mater Sci Eng.A, 2000, 279, 73 of a silicon-carbide-based fibre with a low oxygen content. J. Mater. Sci., 24. Botier, G Chermant, J. L and Vicens, J, Understanding the creep behaviour 1995,30,661. of a 2.5D Cr-SiC composite ll. Experimental specification and macroscopic 13. Challon, G, Pailler, R Naslain, R and Olry, P, Structure composition and mechanical creep responses. Mater. Sci. Eng. A, 2000, 289, 265. mechanical behaviour at high temperature of the oxygen-free Hi-Nicalon 25. Lamouroux, F, Steen, M. and Valles, J. L, Damage of a 2D Al2O3-SiC fibre. In High-temperature Ceramic-Matrix Composites. 11: Manufacturing composite during uniaxial creep. Comp. Sci. TechnoL, 1996, 56, 825 and Materials Development, ed. A G. Evans and R. Naslain Am Ceram. 26. Wilshire, B and Jiang, H, Deformation and failure processes during tensile Soc., Westerville, OH, 1995, p. 299 creep of sintered silicon carbide. Brit. Ceram. Trans., 1994, 93, 213. 14. Fox, D. S and Nguyan, Q. N, Oxidation kinetics of enhanced SiC-SiC. 27. Folweiler, R. C, Creep behaviour of pore-free polycrystalline aluminium Ceram. Eng. Sci. Proc 1995, 16, 877. oxide. J. Appl. Phys., 1961, 32. 773. 15. O"Meara, C, Suihkonen, T, Hansson, T and Warren, R, A microstruc- 28. Birch, J M, wilshire, B, Owen, D. R.J. and Shantaram, D, The influence tural investigation of the mechanisms of tensile creep deformation in an of stress distribution on the deformation and fracture behaviour of ceramic Al203-SiCw composite Mater. Sci. Eng. A, 1996. 209, 251 materials under compressive creep conditions.. Mater. Sci, 1976, 11, 1817. 16. Simon, G. and Bunsell, A. R, Creep behaviour and structural characteriza- 29. wilshire, B, Microstructure dependence of the creep and creep fracture tion at high temperature of Nicalon SiC fibres. J. Mater Sci., 1984, 19, behaviour of ceramic materals. Microsc 1981. 124. 249 30 Coath, J. A. and wilshire, B, Deformation processes during high- 17. Challon, G, Pailler, R, Naslain, R. and Olry, P, Correlation between mperature creep of lime, magnesia and doloma. Ceram. Int, 1977, 3, microstructure and mechanical behaviour at high temperatures of a Sic fibre with a low oxygen content(Hi-Nicalon). J. Mater. Sci, 1997, 32, 31. Coath, J.A. and wilshire, B, The influence of variations in composition on the creep behaviour of doloma. Ceram. Int. 1978, 4, 66.B. Wilshire, M.R. Bache / Journal of the European Ceramic Society 27 (2007) 4603–4611 4611 7. Wilshire, B. and Carreno, F., Deformation and damage processes during ˜ tensile creep of ceramic-fibre-reinforced ceramic–matrix composites. J. Eur. Ceram. Soc., 2000, 20, 463. 8. Wilshire, B., Creep property comparisons for ceramic-fibre-reinforced ceramic–matrix composites. J. Eur. Ceram. Soc., 2002, 22, 1329. 9. Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y. and Kaya, H., Creep and fatigue behaviour of SiC fibre reinforced SiC composite at high tem￾peratures. Mater. Sci. Eng. A, 1997, 225, 69. 10. Zhu, S., Mizuno, M., Nagano, Y., Cao, J., Kagawa, Y. and Kaya, H., Creep and fatigue behaviour of an enhanced SiC–SiC composite at high tempera￾tures. J. Am. Ceram. Soc., 1998, 81, 2269. 11. Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y. and Kaya, H., Creep and fatigue behaviour in Hi-NicalonTM-fibre-reinforced silicon car￾bide composites at high temperatures. J. Am. Ceram. Soc., 1999, 82, 117. 12. Bodet, R., Bourrat, X., Lamon, J. and Naslain, R., Tensile creep behaviour of a silicon-carbide-based fibre with a low oxygen content. J. Mater. Sci., 1995, 30, 661. 13. Challon, G., Pailler, R., Naslain, R. and Olry, P., Structure composition and mechanical behaviour at high temperature of the oxygen-free Hi-NicalonTM fibre. In High-temperature Ceramic–Matrix Composites. II: Manufacturing and Materials Development, ed. A. G. Evans and R. Naslain. Am. Ceram. Soc., Westerville, OH, 1995, p. 299. 14. Fox, D. S. and Nguyan, Q. N., Oxidation kinetics of enhanced SiC–SiC. Ceram. Eng. Sci. Proc., 1995, 16, 877. 15. O’Meara, C., Suihkonen, T., Hansson, T. and Warren, R., A microstruc￾tural investigation of the mechanisms of tensile creep deformation in an Al2O3–SiCw composite. Mater. Sci. Eng. A, 1996, 209, 251. 16. Simon, G. and Bunsell, A. R., Creep behaviour and structural characteriza￾tion at high temperature of NicalonTM SiC fibres. J. Mater. Sci., 1984, 19, 3658. 17. Challon, G., Pailler, R., Naslain, R. and Olry, P., Correlation between microstructure and mechanical behaviour at high temperatures of a SiC fibre with a low oxygen content (Hi-Nicalon). J. Mater. Sci., 1997, 32, 1133. 18. Yun, H. M. and DiCarlo, J. A., Thermo-mechanical behaviour of advanced SiC fibre multi-filament tows. Ceram. Eng. Sci. Proc., 1996, 17A, 61. 19. Heredia, F. E., Evans, A. G. and Andersson, C. A., Tensile and shear proper￾ties of continuous fibre-reinforced SiC/Al2O3 processed by melt oxidation. J. Am. Ceram. Soc., 1995, 78, 2790. 20. Goodall, I. N., Cockcroft, R. D. H. and Chubb, E. J., An approximate description of the creep rupture of structures. Int. J. Mech. Sci., 1975, 17, 351. 21. Wilshire, B. and Burt, H., Tertiary creep of metals and alloys. Z. Metallkd., 2005, 96, 552. 22. Leckie, F. A. and Hayhurst, D. R., Constitutive equations for creep rupture. Acta Metall., 1977, 25, 1059. 23. Botier, G., Vicens, J. and Chermant, J. L., Understanding the creep behaviour of a 2.5D Cf–SiC composite I. Morphology and microstructure of the as￾received material. Mater. Sci. Eng. A, 2000, 279, 73. 24. Botier, G., Chermant, J. L. and Vicens, J., Understanding the creep behaviour of a 2.5D Cf–SiC composite II. Experimental specification and macroscopic mechanical creep responses. Mater. Sci. Eng. A, 2000, 289, 265. 25. Lamouroux, F., Steen, M. and Valles, J. L., Damage of a 2D Al ´ 2O3–SiC composite during uniaxial creep. Comp. Sci. Technol., 1996, 56, 825. 26. Wilshire, B. and Jiang, H., Deformation and failure processes during tensile creep of sintered silicon carbide. Brit. Ceram. Trans., 1994, 93, 213. 27. Folweiler, R. C., Creep behaviour of pore-free polycrystalline aluminium oxide. J. Appl. Phys., 1961, 32, 773. 28. Birch, J. M., Wilshire, B., Owen, D. R. J. and Shantaram, D., The influence of stress distribution on the deformation and fracture behaviour of ceramic materials under compressive creep conditions. J. Mater. Sci., 1976, 11, 1817. 29. Wilshire, B., Microstructure dependence of the creep and creep fracture behaviour of ceramic materials. J. Microsc., 1981, 124, 249. 30. Coath, J. A. and Wilshire, B., Deformation processes during high￾temperature creep of lime, magnesia and doloma. Ceram. Int., 1977, 3, 103. 31. Coath, J. A. and Wilshire, B., The influence of variations in composition on the creep behaviour of doloma. Ceram. Int., 1978, 4, 66
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有