T.Dursun,C.Soutis /Materials and Design 56 (2014)862-871 871 [35]Chen S.Chen K.Peng G.Jia L.Dong P.Effect of heat treatment on strength, [50]Alexopoulos ND.Migklis E.Stylianos A.Myriounis DP.Fatigue behavior of the exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy. aeronautical Al-Li(2198)aluminum alloy under constant amplitude loading. Mater Des2012:35:93-8. nt I Fatigue2013:56:95-105. [36]Zhang JB.Zhang YA.Zhu BH.Liu RQ.Wang F,Liang QM.Characterization of [51]Decreus B.Deschamps A.Donnadieu P.Ehrstrom JC.On the role of microstructure and mechanical properties of Al-Cu-Mg-Ag-(Mn/Zr)alloy microstructure in governing fracture behavior of an aluminum-copper- with high Cu:Mg.Mater Des 2013:49:311-7. lithium alloy.Mat Sci Eng A 2013:586:418-27. [37]Chakherlou TN.Razavi MJ.Aghdam AB.Abazadeh B.An experimental [52]Moreto JA.Gamboni O,Ruchert COFT.Romagnoli F,Moreira MF.Beneduce Fea. investigation of the bolt clamping force and friction effect on the fatigue Corrosion and fatigue behavior of new Al alloys.Proc Eng 2011:10:1521-6. behavior of aluminum alloy 2024-T3 double shear lap joint.Mater Des [53]Rioj RJ.Liu J.The evolution of Al-Li base products for aerospace and space 20】1324641-9 applications.Metull Mater Trans A 2012:43A:3325-37. with shot and aser peened 0-T61 3]Vazquez J.Navarro C.Dominguez J.Exp ental results in fretting fatigue [54]Hamel SF.A parametric study of delaminations in an aluminium-lithium alloy specimens.Int J Fatigue In:MS Thesis.Champaign:University of Illinois at Urbana:2010. 2012:40:143-53. [55]Lenczowski B.New lightweight alloys for welded aircraft structure.In:ICAS [39]Chakherlou TN.Shakouri M.Akbar A.Aghdam AB.Effect of cold expansion and ongress:2002. bolt clamping on fretting behavior of Al 2024-T3 in double shear lap joints.Eng [56]ESAB Technical.Friction Stir Welding.<http://www.esab.com>laccessed Pa1Ana2012.2529=41 25.01121 [40]Oskouei RH.Ibrahim RN.Improving fretting fatigue behaviour of Al 7075-T6 [57]Nandan R.DebRoy T,Bhadeshia HKDH.Recent advances in friction stir bolted plates using electroless Ni-P coatings.Int J Fatigue 2012:44:157-67. welding-process,weldment structure and properties.Prog Mater Sci [41]Oskouei RH.Ibrahim RN.An investigation on the fatigue behaviour of Al 7075 2008:53:980-1023 T6 coated with titanium nitride using physical vapour deposition process. [58]Burford D.Widener C.Tweedy B.Advances in friction stir welding for Mater Des2012:39:294-302. aerospace application.In:6th AlAA Aviation Technology.Integration and [42]Sarhan AAD.Zalnezhad E.Hamdi M.The influence of higher surface hardness Operations Conference,Wichita,USA:2006. on fretting fatigue life of hard anodized aerospace Al 7075-T6 alloy.Mater Sci [59]Colegrove P.Airbus evaluates friction stir welding.<http://www.comsol.com/ EngA2013:560:377-87 academic/papers/1614>[accessed 20.02.12]. [43]Polmear Il.Aluminium alloys -a century of age hardening.Mater Forum [60]Vilaca P.Thomas W.Friction stir welding technology.Adv Struct Mater. 2004:28:1-14. Heidelbe Berlin:Springer-Verlag:2011. [44]Giummarra C.Thomas B.Rioja RJ.New aluminium lithium alloys for aerospace [61]Lertora E.Gambaro C.AA8090 Al-Li alloy fsw parameters to minimize defects applications.In:Light metals technology conference:2007. and increase fatigue life Int I Mater Form 20103:1003-6. [45]Kalyanam S.Beaudoin AJ.Dodds Jr RH,Barlat F.Delamination cracking in [62]Liu H.Zhang H,Pan Q.Yu L.Effect of friction stir welding parameters on advanced aluminium-lithium alloys-experimental and computational studies. microstructural characteristics and mechanical properties of 2219-T6 Eng Fract Mech 2009:76:2174-91 aluminium alloy joints.Int J Mater Form 2011:201:1048-5. [46]Soboyejo WO.Srivatsan TS.Properties,design optimization and [63]Buffa G.Campanile G.Fratini L,Prisco A.Friction stir welding of lap joints: applications.Taylor Francis Group,LLC:2006. influence of process parameters on the metallurgical and mechanical [47]Bodily B.Heinimann M,Bray G.Colvin E,Witters J.Advanced aluminum and properties.Mater Sci Eng A 2009:519:19-26. aluminum-lithium solutions for derivative and next generation aerospace [64]Yang ZB.Tao W.Li LQ,Chen YB.Li FZ,Zhang YL Double-sided laser beam structures.SAE paper no 2012-01-1874. welded T-joints for aluminum aircraft fuselage panels: process [48]Yuan Z.Lu Z.Xie Y.Wu X.Dai S.Liu C.Mechanical properties of a novel high- microstructure,and mechanical properties.Mater Des 2012:33:652-8. strength aluminium-lithium alloy.Mater Sci Forum 2011:689:385-9. [65]Quintino L Miranda R.Dilthey U.Laser welding of structural aluminium.Adv [49]Lequeu PH.Smith K.Danie'lou A.Aluminium-copper-lithium alloy 2050 Struct Mater.Heidelberg.Berlin:Springer-Verlag:2011. developed for medium to thick plate.JMEPEG 2010:19:841-7.[35] Chen S, Chen K, Peng G, Jia L, Dong P. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy. Mater Des 2012;35:93–8. [36] Zhang JB, Zhang YA, Zhu BH, Liu RQ, Wang F, Liang QM. Characterization of microstructure and mechanical properties of Al–Cu–Mg–Ag–(Mn/Zr) alloy with high Cu:Mg. Mater Des 2013;49:311–7. [37] Chakherlou TN, Razavi MJ, Aghdam AB, Abazadeh B. An experimental investigation of the bolt clamping force and friction effect on the fatigue behavior of aluminum alloy 2024-T3 double shear lap joint. Mater Des 2011;32:4641–9. [38] Vazquez J, Navarro C, Dominguez J. Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens. Int J Fatigue 2012;40:143–53. [39] Chakherlou TN, Shakouri M, Akbar A, Aghdam AB. Effect of cold expansion and bolt clamping on fretting behavior of Al 2024-T3 in double shear lap joints. Eng Fail Anal 2012;25:29–41. [40] Oskouei RH, Ibrahim RN. Improving fretting fatigue behaviour of Al 7075-T6 bolted plates using electroless Ni–P coatings. Int J Fatigue 2012;44:157–67. [41] Oskouei RH, Ibrahim RN. An investigation on the fatigue behaviour of Al 7075- T6 coated with titanium nitride using physical vapour deposition process. Mater Des 2012;39:294–302. [42] Sarhan AAD, Zalnezhad E, Hamdi M. The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace Al 7075-T6 alloy. Mater Sci Eng A 2013;560:377–87. [43] Polmear IJ. Aluminium alloys – a century of age hardening. Mater Forum 2004;28:1–14. [44] Giummarra C, Thomas B, Rioja RJ. New aluminium lithium alloys for aerospace applications. In: Light metals technology conference; 2007. [45] Kalyanam S, Beaudoin AJ, Dodds Jr RH, Barlat F. Delamination cracking in advanced aluminium–lithium alloys-experimental and computational studies. Eng Fract Mech 2009;76:2174–91. [46] Soboyejo WO, Srivatsan TS. Properties, design optimization and applications. Taylor & Francis Group, LLC; 2006. [47] Bodily B, Heinimann M, Bray G, Colvin E, Witters J. Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures. SAE paper no 2012-01-1874. [48] Yuan Z, Lu Z, Xie Y, Wu X, Dai S, Liu C. Mechanical properties of a novel highstrength aluminium–lithium alloy. Mater Sci Forum 2011;689:385–9. [49] Lequeu PH, Smith K, Danie’lou A. Aluminium–copper–lithium alloy 2050 developed for medium to thick plate. JMEPEG 2010;19:841–7. [50] Alexopoulos ND, Migklis E, Stylianos A, Myriounis DP. Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading. Int J Fatigue 2013;56:95–105. [51] Decreus B, Deschamps A, Donnadieu P, Ehrström JC. On the role of microstructure in governing fracture behavior of an aluminum–copper– lithium alloy. Mat Sci Eng A 2013;586:418–27. [52] Moreto JA, Gamboni O, Ruchert COFT, Romagnoli F, Moreira MF. Beneduce Fea. Corrosion and fatigue behavior of new Al alloys. Proc Eng 2011;10:1521–6. [53] Rioj RJ, Liu J. The evolution of Al–Li base products for aerospace and space applications. Metull Mater Trans A 2012;43A:3325–37. [54] Hamel SF. A parametric study of delaminations in an aluminium–lithium alloy. In: MS Thesis. Champaign: University of Illinois at Urbana; 2010. [55] Lenczowski B. New lightweight alloys for welded aircraft structure. In: ICAS Congress; 2002. [56] ESAB Technical. Friction Stir Welding. <http://www.esab.com> [accessed 25.01.12]. [57] Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction stir welding-process, weldment structure and properties. Prog Mater Sci 2008;53:980–1023. [58] Burford D, Widener C, Tweedy B. Advances in friction stir welding for aerospace application. In: 6th AIAA Aviation Technology, Integration and Operations Conference, Wichita, USA; 2006. [59] Colegrove P. Airbus evaluates friction stir welding. <http://www.comsol.com/ academic/papers/1614> [accessed 20.02.12]. [60] Vilaça P, Thomas W. Friction stir welding technology. Adv Struct Mater. Heidelberg, Berlin: Springer-Verlag; 2011. [61] Lertora E, Gambaro C. AA8090 Al–Li alloy fsw parameters to minimize defects and increase fatigue life. Int J Mater Form 2010;3:1003–6. [62] Liu H, Zhang H, Pan Q, Yu L. Effect of friction stir welding parameters on microstructural characteristics and mechanical properties of 2219–T6 aluminium alloy joints. Int J Mater Form 2011;201:1048–5. [63] Buffa G, Campanile G, Fratini L, Prisco A. Friction stir welding of lap joints: influence of process parameters on the metallurgical and mechanical properties. Mater Sci Eng A 2009;519:19–26. [64] Yang ZB, Tao W, Li LQ, Chen YB, Li FZ, Zhang YL. Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: process, microstructure, and mechanical properties. Mater Des 2012;33:652–8. [65] Quintino L, Miranda R, Dilthey U. Laser welding of structural aluminium. Adv Struct Mater. Heidelberg, Berlin: Springer-Verlag; 2011. T. Dursun, C. Soutis / Materials and Design 56 (2014) 862–871 871