正在加载图片...
REVIEWS 45.Bruce,C.J.Golbe 73 Gotseb,J.P.K 391481-44 21. 301-30 273-22 d.270.802-8 cad Se 1-836 48 m. 261- dyMH.eU E&0 M.A D 71. ndl M.C..c R5. 3 31. Mn ds Jonos.E.G.&Pet A 3 D.M.Grag.Rg 84 cabnl D.An 60. -13196 ran Res 0.1 Th 3L,12131219 61. S9-1 8 45320 g1 enry-Hot& R.&R n-Rakic.PS. return.Pends Coon.Sci 4. 19)2 .EM 99 1. e人 1时7 54 214 MARCH2002 VOLUM正3 .nature.com/reviews/neuro 214 | MARCH 2002 | VOLUME 3 www.nature.com/reviews/neuro REVIEWS 20. Gitelman, D. R. et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122, 1093–1106 (1999). 21. Perry, R. J. & Zeki, S. The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123, 2273–2288 (2000). 22. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems. Proc. Natl Acad. Sci. USA 95, 831–838 (1998). 23. Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001). 24. Paus, T. Location and function of the human frontal eye￾field: a selective review. Neuropsychologia 34, 475–483 (1996). 25. Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J. Neurophysiol. 46, 755–772 (1981). 26. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996). Shows how preparatory signals for visual attention and eye movements are combined in LIP neurons. 27. Nakamura, K. & Colby, C. L. Visual, saccade-related, and cognitive activation of single neurons in monkey exstrastriate area V3A. J. Neurophysiol. 84, 677–692 (2000). 28. Pashler, H. E. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1998). 29. Shulman, G. L., d’Avossa, G., Tansy, A. P. & Corbetta, M. Two attentional processes in the parietal lobe. Soc. Neurosci. Abstr. 27, 722.20 (2001). 30. Serences, J. T., Schwarzbach, J. & Yantis, S. Control mechanisms of object-based visual attention in human cortex. Soc. Neurosci. Abstr. 27, 348.9 (2001). 31. Le, T. H., Pardo, J. V. & Hu, X. 4T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J. Neurophysiol. 79, 1535–1548 (1998). 32. Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373, 518–521 (1995). 33. Toth, L. J. & Assad, J. A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002). 34. Blake, R., Cepeda, N. J. & Hiris, E. Memory for visual motion. J. Exp. Psychol. Hum. Percept. Perform. 23, 353–369 (1997). 35. Magnussen, S., Greenlee, M. W., Asplund, R. & Dyrnes, S. Stimulus-specific mechanisms of visual short-term memory. Vision Res. 31, 1213–1219 (1991). 36. Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119–126 (2001). Reviews the relationship between spatial working memory and attention. 37. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997). 38. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988). 39. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 65, 1464–1483 (1991). 40. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995). 41. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). References 40 and 41 review the role of the prefrontal cortex in attention and executive control. 42. Savage-Rumbaugh, S., Shanker, S. G. & Talbot, J. T. Apes, Language, and the Human Mind (Oxford Univ. Press, New York, 1998). 43. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997). Presents evidence of different preparatory response mechanisms for eye and arm in the macaque posterior parietal cortex. 44. Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20, 350–357 (1997). 45. Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985). 46. Wise, S. P., Weinrich, M. & Mauritz, K. H. Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 260, 301–305 (1983). 47. Kawashima, R., Roland, P. E. & O’Sullivan, B. Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. Cereb. Cortex 5, 111–122 (1995). 48. Petit, L., Clark, V. P., Ingeholm, J. & Haxby, J. V. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J. Neurophysiol. 77, 3386–3390 (1997). 49. Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol. 84, 1645–1655 (2000). 50. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000). 51. Rizzolatti, G., Riggio, L., Dascola, I. & Umiltá, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987). 52. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998). 53. Nobre, A. C., Gitelman, D. R., Dias, E. C. & Mesulam, M. M. Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11, 210–216 (2000). 54. Rushworth, M. F., Paus, T. & Sipila, P. K. Attention systems and the organization of the human parietal cortex. J. Neurosci. 21, 5262–5271 (2001). 55. Allport, A., Styles, E. A. & Hsieh, S. in Attention and Performance XV (eds Umilta, C. & Moscovitch, M.) 421–452 (Erlbaum, Hillsdale, New Jersey, 1994). 56. Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. 124, 207–231 (1995). 57. Meiran, N., Chorev, Z. & Sapir, A. Component processes in task switching. Cogn. Psychol. 41, 211–253 (2000). References 55–57 describe psychological processes involved in task switching. 58. Fuster, J. M. in Cerebral Cortex (eds Jones, E. G. & Peters, A.) 151–177 (Plenum, New York, 1985). 59. Goldman-Rakic, P. S. in Handbook of Physiology, Section 1. Higher Functions of the Brain (eds Plum, F. & Mountcastle, V.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987). 60. Kimberg, D. Y., Aguirre, G. K. & D’Esposito, M. Modulation of task-related neural activity in task-switching: an fMRI study. Brain Res. Cogn. Brain Res. 10, 189–196 (2000). 61. Sohn, M.-H., Ursu, S., Anderson, J. R., Stenger, V. A. & Carter, C. S. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc. Natl Acad. Sci. USA 97, 13448–13453 (2000). 62. James, W. Principles of Psychology Vol. 1 (Henry-Holt & Co., New York, 1890). 63. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989). 64. Posner, M. I. & Cohen, Y. in Attention and Performance X (eds Bouman, H. & Bowhuis, D.) 55–66 (Erlbaum, Hillsdale, New Jersey, 1984). 65. Muller, H. J. & Rabbitt, M. A. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. 15, 315–330 (1989). 66. Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000). 67. Jonides, J. in Attention and Performance XI (eds Posner, M. I. & Marin, O.) 187–205 (Erlbaum, Hillsdale, New Jersey, 1981). 68. Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 16, 121–134 (1990). 69. Folk, C. L., Remington, R. W. & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 18, 1030–1044 (1992). References 68 and 69 discuss cognitive influences on stimulus-driven orienting. 70. Wolfe, J. M. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994). 71. Thompson, K. G., Bichot, N. P. & Schall, J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77, 1046–1050 (1997). 72. Bichot, N. P. & Schall, J. D. Effects of similarity and history on neural mechanisms of visual selection. Nature Neurosci. 2, 549–554 (1999). 73. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998). References 71–73 show that FEF and LIP neurons are modulated by stimulus salience and task relevance. 74. Corbetta, M., Shulman, G. L., Miezin, F. M. & Petersen, S. E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270, 802–805 (1995). 75. Leonards, U., Sunaert, S., Van Hecke, P. & Orban, G. A. Attention mechanisms in visual search — an fMRI study. J. Cogn. Neurosci. 12, 61–75 (2000). 76. Shulman, G. L., Ollinger, J. M., Linenweber, M., Petersen, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl Acad. Sci. USA 98, 313–318 (2001). 77. Huettel, S. A., Guzeldere, G. & McCarthy, G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J. Cogn. Neurosci. 13, 1006–1018 (2001). 78. Beck, D. M., Rees, G., Frith, C. D. & Lavie, N. Neural correlates of change detection and change blindness. Nature Neurosci. 4, 645–650 (2001). References 76–78 show that attentional search and target detection modulate the dorsal frontoparietal network and the visual cortex. 79. Arrington, C. M., Carr, T. H., Mayer, A. R. & Rao, S. M. Neural mechanisms of visual attention: object-based selection of a region in space. J. Cogn. Neurosci. 12, 106–117 (2000). 80. Kirino, E., Belger, A., Goldman-Rakic, P. & McCarthy, G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J. Neurosci. 20, 6612–6618 (2000). 81. Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25, 717–728 (2000). 82. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci. 3, 277–283 (2000). Presents evidence that the ventral frontoparietal network responds to stimulus changes in different sensory modalities. 83. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001). 84. Knight, R. T. & Scabini, D. Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin. Neurophysiol. 15, 3–13 (1998). 85. Daffner, K. R. et al. The central role of the prefrontal cortex in directing attention to novel events. Brain 123, 927–939 (2000). 86. Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987). 87. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267 (2001). 88. Serences, J., Shomstein, S., Leber, A., Yantis, S. & Egeth, H. E. Neural mechanisms of goal-directed and stimulus￾driven attentional control. Psychon. Soc. Abstr. 42, 135 (2001). 89. Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000). 90. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38, 133–142 (2001). 91. Stuss, D. T. & Benson, D. F. The Frontal Lobes (Raven, New York, 1986). 92. Yokoyama, K., Jennings, R., Ackles, P., Hood, P. & Boller, F. Lack of heart rate changes during an attention-demanding task after right hemisphere lesions. Neurology 37, 624–630 (1987). 93. Steinmetz, M. A. & Constantinidis, C. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb. Cortex 5, 448–456 (1995). 94. Robinson, D. L., Bowman, E. M. & Kertzman, C. Covert orienting of attention in macaques. II. Contributions of parietal cortex. J. Neurophysiol. 74, 698–721 (1995). 95. Constantinidis, C. & Steinmetz, M. A. Neuronal responses in area 7a to multiple stimulus displays. II. Responses are suppressed at the cued location. Cereb. Cortex 11, 592–597 (2001). 96. Shulman, G. L. et al. Reactivation of networks involved in preparatory states. Cereb. Cortex (in the press)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有