正在加载图片...
.632· 工程科学学报,第41卷,第5期 蚀风险不容忽视 1096 (2)随着溴盐溶液浓度的升高,普通13Cr的自 [7]Liu Y,Xu L N,Lu M X,et al.Corrosion mechanism of 13Cr 腐蚀电位和点蚀电位均明显负移,对应平均腐蚀速 stainless steel in completion fluid of high temperature and high concentration bromine salt.Appl Surf Sci,2014,314:768 率和最大局部腐蚀速率均明显上升,而超级13Cr则 [8]Yin Z F,Wang X Z,Liu L,et al.Characterization of corrosion 仅有点蚀电位明显负移,自腐蚀电位则相对稳定,对 product layers from CO,corrosion of 13Cr stainless steel in simula- 应局部腐蚀速率上升而平均腐蚀速率则相对稳定, ted oilfield solution.J Mater Eng Perform,2011,20(7):1330 这说明相比普通13Cr,超级13Cr对溴盐溶液具有 [9]Lii X H,Zhao G X,Fan Z H,et al.Effects of CI-concentration 更强的耐受能力,且对溴盐浓度的敏感性更低. and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure.Mater Prot,2004,37 (3)相比普通13Cr,超级13Cr的点蚀电位整体 (6):34 正移约100mV,表现出更强的耐点蚀性能,这与两 (吕祥鸿,赵国仙,樊治海,等.高温高压下C1~浓度,C02分 种材料的最大局部腐蚀速率结果是相符的 压对13Cr不锈钢点蚀的影响.材料保护,2004,37(6):34) (4)对于采用溴盐完井液的油气井选材过程 [10]Hou Z,Zhou Q J,Wang Q J,et al.Investigation on carbon di- 中,对普通13C的使用应十分谨慎,而对于超级 oxide corrosion performance of various 13Cr steels in simulated stratum water.Chin Soc Corros Prot,2012,32(4):300 13Cr,对其局部腐蚀风险的全面评估也十分必要和 (侯赞,周庆军,王起江,等.3C系列不锈钢在模拟井下 关键 介质中的C02腐蚀研究.中国腐蚀与防护学报,2012,32 (4):300) 参考文献 [11]Zhao Y,Li X P.Zhang C,et al.Investigation of the rotation [1]Zhang GC,Lin G F,Sun Y L,et al.Research on corrosion re- speed on corrosion behavior of HP-13Cr stainless steel in the ex- sistance of 13Cr stainless steel.Total Corros Control,2011,25 tremely aggressive oilfield environment by using the rotating cage (4):16 test.Corros Sci,2018,145:307 (张国超,林冠发,孙育禄,等.13C不锈钢腐蚀性能的研究 [12]Lei X W,Wang H Y,Mao F X,et al.Electrochemical behav 现状与进展.全面腐蚀控制,2011,25(4):16) iour of martensitic stainless steel after immersion in a H,S-satu- [2]Chu W Y,Wang Y B,Guan Y S,et al.Design of API C90 tubu- rated solution.Corros Sci,2018,131:164 lar steel.Acta Metall Sinica,1998,31(10):1073 [13]Chen Z Y.Li L J,Zhang G A,et al.Inhibition effect of propar- (褚武扬,王燕斌,关永生,等.抗H2S石油套管钢的设计.金 gyl alcohol on the stress corrosion cracking of super 13Cr steel in 属学报,1998,31(10):1073) a completion fluid.Corros Sci,2013,69:205 [3]Li X H,Zhao G X,Wang Y,et al.SSC resistance of super 13Cr [14]ASTM International,United States.ASTM G1-03 Standard Prac- martensitic stainless steel.J Mater Eng,2011(2):17 tice for Preparing,Cleaning,and Eraluating Corrosion Test Spec- (吕祥鸿,赵国仙,王宇,等.超级13C马氏体不锈钢抗SSC imens.West Conshohocken:ASTM International,2011 性能研究.材料工程,2011(2):17) [15]NACE International,United States.NACE PR0775-05 Prepara- [4]Chen Y,Bai Z Q.Compare of CO2 corrosion resistance of 13Cr tion,Installation,Analysis,and Interpretation of Corrosion Cou- and N80 steel under high temperature and high pressure.Chem pons in Oilfield Operations.Houston:ASTM Interational,2005 Eng0 il Gas,2007,36(3):239 [16]Si JJ,Wu Y D,Wang T,et al.Composition-controlled active- (陈尧,白真权.13Cr和N80钢高温高压抗腐蚀性能比较.石 passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B 油与天然气化工,2007,36(3):239) bulk amorphous steels.Appl Surf Sci,2018,445:496 [5]Cai L.The Research and Application of Enrironmentally Friendly [17]Moon J,Ha H Y,Park S J,et al.Effect of Mo and Cr additions Completion Fluid [Dissertation].Daqing:Daqing Petroleum Insti- on the microstructure,mechanical properties and pitting corosion tute,2009 resistance of austenitic Fe-30Mn-10.5Al-1.IC lightweight (蔡亮.环保型完并液的研究与应用[学位论文].大庆:大庆 steels.J Alloys Compd,2019,775:1136 石油学院,2009) [18]Guo FF,Dong G N,Dong L S.High temperature passive film [6]Liu Y,Xu L N,Zhu J Y,et al.Pitting corrosion of 13Cr steel in on the surface of Co-Cr-Mo alloy and its tribological properties. aerated brine completion fluids.Mater Corros,2014,65(11 ) Appl Surf Sci,2014,314:777工程科学学报,第 41 卷,第 5 期 蚀风险不容忽视. (2)随着溴盐溶液浓度的升高,普通 13Cr 的自 腐蚀电位和点蚀电位均明显负移,对应平均腐蚀速 率和最大局部腐蚀速率均明显上升,而超级 13Cr 则 仅有点蚀电位明显负移,自腐蚀电位则相对稳定,对 应局部腐蚀速率上升而平均腐蚀速率则相对稳定, 这说明相比普通 13Cr,超级 13Cr 对溴盐溶液具有 更强的耐受能力,且对溴盐浓度的敏感性更低. (3)相比普通 13Cr,超级 13Cr 的点蚀电位整体 正移约 100 mV,表现出更强的耐点蚀性能,这与两 种材料的最大局部腐蚀速率结果是相符的. (4)对于采用溴盐完井液的油气井选材过程 中,对普通 13Cr 的使用应十分谨慎,而对于超级 13Cr,对其局部腐蚀风险的全面评估也十分必要和 关键. 参 考 文 献 [1] Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion re鄄 sistance of 13Cr stainless steel. Total Corros Control, 2011, 25 (4): 16 (张国超, 林冠发, 孙育禄, 等. 13Cr 不锈钢腐蚀性能的研究 现状与进展. 全面腐蚀控制, 2011, 25(4): 16) [2] Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubu鄄 lar steel. Acta Metall Sinica, 1998, 31(10): 1073 (褚武扬, 王燕斌, 关永生, 等. 抗 H2 S 石油套管钢的设计. 金 属学报, 1998, 31(10): 1073) [3] L俟 X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 (吕祥鸿, 赵国仙, 王宇, 等. 超级 13Cr 马氏体不锈钢抗 SSC 性能研究. 材料工程, 2011(2): 17) [4] Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 (陈尧, 白真权. 13Cr 和 N80 钢高温高压抗腐蚀性能比较. 石 油与天然气化工, 2007, 36(3): 239) [5] Cai L. The Research and Application of Environmentally Friendly Completion Fluid [Dissertation]. Daqing: Daqing Petroleum Insti鄄 tute, 2009 (蔡亮. 环保型完井液的研究与应用[学位论文]. 大庆: 大庆 石油学院, 2009) [6] Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65 ( 11 ): 1096 [7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 [8] Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simula鄄 ted oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 [9] L俟 X H, Zhao G X, Fan Z H, et al. Effects of CI - concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004,37 (6): 34 (吕祥鸿, 赵国仙, 樊治海, 等. 高温高压下 Cl - 浓度、CO2 分 压对 13Cr 不锈钢点蚀的影响. 材料保护, 2004, 37(6): 34) [10] Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon di鄄 oxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 (侯赞, 周庆军, 王起江, 等. 13Cr 系列不锈钢在模拟井下 介质中的 CO2 腐蚀研究. 中国腐蚀与防护学报, 2012, 32 (4): 300) [11] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP鄄鄄13Cr stainless steel in the ex鄄 tremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 [12] Lei X W, Wang H Y, Mao F X, et al. Electrochemical behav鄄 iour of martensitic stainless steel after immersion in a H2 S鄄satu鄄 rated solution. Corros Sci, 2018, 131: 164 [13] Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propar鄄 gyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 [14] ASTM International, United States. ASTM G1鄄03 Standard Prac鄄 tice for Preparing, Cleaning, and Evaluating Corrosion Test Spec鄄 imens. West Conshohocken: ASTM International, 2011 [15] NACE International, United States. NACE PR0775鄄05 Prepara鄄 tion, Installation, Analysis, and Interpretation of Corrosion Cou鄄 pons in Oilfield Operations. Houston: ASTM International, 2005 [16] Si J J, Wu Y D, Wang T, et al. Composition鄄controlled active鄄 passive transition and corrosion behavior of Fe鄄鄄 Cr(Mo)鄄鄄 Zr鄄鄄 B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 [17] Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe鄄鄄 30Mn鄄鄄 10郾 5Al鄄鄄 1郾 1C lightweight steels. J Alloys Compd, 2019, 775: 1136 [18] Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co鄄鄄Cr鄄鄄Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 ·632·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有