定周期轨道嵌入在奇怪吸引子内,我们可以根据需要通过对系统施加一个小扰动 的方法使其中之一稳定并将混沌系统驱动到这一稳定周期轨道状态。这一技术已 经被成功地应用于各种机械的、电子的、激光的、化学的系统和心脏组织的控制 上 自然界中的大多数特殊结构是由大量相同组元自组织集结而成的。通过某种 简单的称之为组织的构造法就可以出现自集结过程。两种最简单的构造法是所谓 规则性构造法和随机性构造法。采用规则性构造法,所有组元就排列成为周期或 准周期方式而构造成例如晶体与合金等等。采用随机性构造法而形成的结构(或 非结构)的例子有气体和动物毛发的分布等等。而在这两种极端的构造法之间, 则有自相似构造法,这将产生称为分形的自相似结构。在一个分形中,系统的局 部与整体相似。分形通常具有分数维数。许多分形还可能是不同分数维的分形的 集合,故称为多重分形。分形和多重分形的名词,是上世纪八十年代由曼德勃罗 特首先提出的。现在,分形在自然界和数学系统中的广泛存在性已被人们普遍认 识。例如:凝聚体和胶体、树木、岩石、山脉、云彩、星系、粗糙的表面和界面、 聚合物和股票市场,无不存在分形。而耗散动力系统中的混沌就表现为相空间中 具有分形结构的奇怪吸引子。奇怪吸引子本身及其吸引域都可能是分形。混沌与 分形之间的这种联系至今尚未被充分理解。 分形系统的最典型性质是缺少空间的特征尺度。这一性质可以有三种等价的 表达方式:拓朴自相似性,空间的幂函数律,和标度不变性。类似的,系统中不 存在时间的特征尺度将导致时间的幂函数律,例如,1噪声。为了解释分形和 无特征尺度行为在非平衡系统中的广泛存在性,丹麦人巴克和中国学者汤超等在 1987年提出了自组织临界性假设,现在人们知道,自组织临界性假设不仅适用 于沙堆,也适用于许多自然系统和社会系统。 人们早就注意到河流、树枝、叶脉、和闪电所形成的分枝之间有惊人的相似 性。这些分枝的斑图与在云彩和海藻类群落中所观察到的紧致斑图显然不同。大 自然是如何生成这些斑图的?这些不同斑图模式的形成是否存在一种简单的原 理或普适的机制?目前还找不到对于这些问题的最终回答,但最近二十年来在这 方面的研究已经取得可喜的进展 混沌理论的成功也开启了复杂性科学的研究之门。在七八十年代,当人们认 识了混沌之后,对于从自然系统和社会系统中获得的各种时间序列,莫不用混沌定周期轨道嵌入在奇怪吸引子内,我们可以根据需要通过对系统施加一个小扰动 的方法使其中之一稳定并将混沌系统驱动到这一稳定周期轨道状态。这一技术已 经被成功地应用于各种机械的、电子的、激光的、化学的系统和心脏组织的控制 上。 自然界中的大多数特殊结构是由大量相同组元自组织集结而成的。通过某种 简单的称之为组织的构造法就可以出现自集结过程。两种最简单的构造法是所谓 规则性构造法和随机性构造法。采用规则性构造法,所有组元就排列成为周期或 准周期方式而构造成例如晶体与合金等等。采用随机性构造法而形成的结构(或 非结构)的例子有气体和动物毛发的分布等等。而在这两种极端的构造法之间, 则有自相似构造法,这将产生称为分形的自相似结构。在一个分形中,系统的局 部与整体相似。分形通常具有分数维数。许多分形还可能是不同分数维的分形的 集合,故称为多重分形。分形和多重分形的名词,是上世纪八十年代由曼德勃罗 特首先提出的。现在,分形在自然界和数学系统中的广泛存在性已被人们普遍认 识。例如:凝聚体和胶体、树木、岩石、山脉、云彩、星系、粗糙的表面和界面、 聚合物和股票市场,无不存在分形。而耗散动力系统中的混沌就表现为相空间中 具有分形结构的奇怪吸引子。奇怪吸引子本身及其吸引域都可能是分形。混沌与 分形之间的这种联系至今尚未被充分理解。 分形系统的最典型性质是缺少空间的特征尺度。这一性质可以有三种等价的 表达方式:拓朴自相似性,空间的幂函数律,和标度不变性。类似的,系统中不 存在时间的特征尺度将导致时间的幂函数律,例如,1/f 噪声。为了解释分形和 无特征尺度行为在非平衡系统中的广泛存在性,丹麦人巴克和中国学者汤超等在 1987 年提出了自组织临界性假设,现在人们知道,自组织临界性假设不仅适用 于沙堆,也适用于许多自然系统和社会系统。 人们早就注意到河流、树枝、叶脉、和闪电所形成的分枝之间有惊人的相似 性。这些分枝的斑图与在云彩和海藻类群落中所观察到的紧致斑图显然不同。大 自然是如何生成这些斑图的?这些不同斑图模式的形成是否存在一种简单的原 理或普适的机制?目前还找不到对于这些问题的最终回答,但最近二十年来在这 方面的研究已经取得可喜的进展。 混沌理论的成功也开启了复杂性科学的研究之门。在七八十年代,当人们认 识了混沌之后,对于从自然系统和社会系统中获得的各种时间序列,莫不用混沌