正在加载图片...
白于良等:感应加热温度对冷-热轧制成形钛/钢复合板界面的影响 1645 表2图10中各点的元素含量(原子数分数) 特征.北京科技大学学报,2012,34(6):671) [5]Xie M X,Zhang L J,Zhang G F,et al.Microstructure and Table 2 Element composition of each point in Fig.10 mechanical properties of CP-Ti/X65 bimetallic sheets fabricated Point Ti Fe C by explosive welding and hot rolling.Mater Des,2015,87:181 83.57 1.73 14.7 [6] Jiang H T,Yan X Q,Liu J X,et al.Effect of heat treatment on 2 4.13 95.87 microstructure and mechanical property of Ti-steel explosive. 81.97 0.65 17.38 rolling clad plate.Trans Nonferrous Met Soc China,2014,24(3): 0.83 61.17 38.01 697 92.04 1.51 6.54 [7] Kundu S,Sam S,Mishra B,et al.Diffusion bonding of microduplex stainless steel and Ti alloy with and without 6 0.49 88.83 10.68 interlayer:interface microstructure and strength properties.Mel 热轧制复合法制备的钛/钢复合板界面形成硬化层 Mater Trans A,2014,45(1):371 [8] Song T F,Jiang X S,Shao Z Y,et al.Microstructure and 碎块的原因是,钛加工硬化率较高,钢刷打磨导致 mechanical properties of vacuum diffusion bonded joints between 钛待复合表面加工硬化形成硬化层,冷轧预复合 Ti-6Al-4V titanium alloy and AISI316L stainless steel using 时钛待复合表面的硬化层破裂并在轧制压力作用 Cu/Nb multi-interlayer.Vacuum,2017,145:68 下嵌入钢侧,由于后续感应加热时间和热轧时间 91 Yu C,Xiao H,Yu H,et al.Mechanical properties and interfacial 较短,硬化层碎块没有完全软化得以保留24-2界 structure of hot-roll bonding TA2/Q235B plate using DT4 面处硬化层碎块的存在对钛/钢复合板界面结合强 interlayer.Mater Sci Eng A,2017,695:120 度的提升起到了积极的作用 [10]Ma Z X,Hu J,Li D F,et al.Overview of research and manufacture of layer-metal composite plate.ChinJ Rare Met,2003,27(6):799 3结论 (马志新,胡捷,李德富,等.层状金属复合板的研究和生产现状 稀有金属,2003,27(6):799) (1)开发了先冷轧预复合钛/钢组坯,再感应加 [11]Chai X Y,Pan T,Chai F,et al.Interlayer engineering for titanium 热钛/钢预复合板后单道次热轧的冷-热轧制复合 clad steel by hot roll bonding.J ron Steel Res Int,2018,25(7): 法,成功制备了钛钢复合板 739 (2)冷-热轧制复合法制备的钛/钢复合板由于 [12]Liu J G,Cai WC,Liu L,et al.Investigation of interfacial structure 感应加热和热轧的时间较短(<5s),钛/钢界面仅 and mechanical properties of titanium clad steel sheets prepared by 有少量硬化层碎块,没有大量金属间化合物析出 a brazing-rolling process.Mater Sci Eng ,2017,703:386 (3)钛/钢复合板的界面Ti和Fe元素扩散层宽 [13]Wang JZ,Yan X B.Wang W Q,et al.Summarization of the 度随感应加热温度增大而增大,950℃时界面扩 rolling Ti-steel composite plates process.Mater Rev,2005,19(4): 6 散层宽度达到8m.在感应加热温度为750~950℃ (王敬忠,颜学柏,王韦琪,等.轧制钛-钢复合板工艺综述.材料 的条件下,钛/钢复合板的界面结合性能良好 导报.2005.19(4):61) [14]Luo Z A,Wang G L,Xie G M,et al.Interfacial microstructure and 参考文献 properties of a vacuum hot roll-bonded titanium-stainless steel clad [Yan L.Behaviotsard applications of Ti/steel composite sheets. plate with a niobium interlayer.Acta Metall Sin (Engl Lett),2013, China Tit Ind,2011(3):12 26(6):754 (闫力.钛钢复合板的特点及应用领域中国钛业,2011(3):12) [15]Yu C,Qi Z C,Yu H,et al.Microstructural and mechanical [2]Hu J,Xie R.Du X B.Processing technology of titanium steel clad properties of hot roll bonded titanium alloy/low carbon steel plate plate and its application in ship and ocean engineering.Jiangsu JMater Eng Perform,2018,27(4):1664 Ship,2016,33(6:6 [16]Lee M K,Lee J G,Choi Y H,et al.Interlayer engineering for (胡杰,谢荣,杜训柏.钛钢复合板加工技术及其在船海工程中 dissimilar bonding of titanium to stainless steel.Mater Lett,2010, 的应用.江苏船舶,2016,33(6):6) 64(9:1105 [3]Prasanthi T N,Ravikirana C S,Saroja S.Explosive cladding and [17]Ke S R,Xu X H,Xiang Z D.Feasibility of cladding Ti to carbon post-weld heat treatment of mild steel and titanium.Mater Des, steel by diffusion bonding followed by hot-rolling /Proceedings 2016.93:180 of the 5th International Conference on Advanced Design and [4]Liu J X,Zhao A M,Jiang H T,et al.Microstructure features of the Manfacturing Engineering.Shenzhen,2015:1961 steel side in TA2-Q235B explosive clad plates.J Univ Sci Technol [18]Jiang H T,Yan X Q,Liu J X,et al.Diffusion behavior and Beijing,.2012,34(6):671 mathematical model of Ti-steel explosive clad plate during heat (刘继雄,赵爱民,江海涛,等.TA2-Q235B爆炸复合板钢侧组织 treatment.Rare Met Mater Eng,2015,44(4):972热轧制复合法制备的钛/钢复合板界面形成硬化层 碎块的原因是,钛加工硬化率较高,钢刷打磨导致 钛待复合表面加工硬化形成硬化层,冷轧预复合 时钛待复合表面的硬化层破裂并在轧制压力作用 下嵌入钢侧,由于后续感应加热时间和热轧时间 较短,硬化层碎块没有完全软化得以保留[24−25] . 界 面处硬化层碎块的存在对钛/钢复合板界面结合强 度的提升起到了积极的作用. 3    结论 (1)开发了先冷轧预复合钛/钢组坯,再感应加 热钛/钢预复合板后单道次热轧的冷−热轧制复合 法,成功制备了钛/钢复合板. (2)冷−热轧制复合法制备的钛/钢复合板由于 感应加热和热轧的时间较短(<5 s),钛/钢界面仅 有少量硬化层碎块,没有大量金属间化合物析出. (3)钛/钢复合板的界面 Ti 和 Fe 元素扩散层宽 度随感应加热温度增大而增大,950 ℃ 时界面扩 散层宽度达到 8 μm. 在感应加热温度为 750~950 ℃ 的条件下,钛/钢复合板的界面结合性能良好. 参    考    文    献 Yan  L.  Behaviotsard  applications  of  Ti/steel  composite  sheets. China Tit Ind, 2011(3): 12 (闫力. 钛钢复合板的特点及应用领域. 中国钛业, 2011(3):12) [1] Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate  and  its  application  in  ship  and  ocean  engineering. Jiangsu Ship, 2016, 33(6): 6 (胡杰, 谢荣, 杜训柏. 钛钢复合板加工技术及其在船海工程中 的应用. 江苏船舶, 2016, 33(6):6) [2] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld  heat  treatment  of  mild  steel  and  titanium. Mater Des, 2016, 93: 180 [3] Liu J X, Zhao A M, Jiang H T, et al. Microstructure features of the steel side in TA2-Q235B explosive clad plates. J Univ Sci Technol Beijing, 2012, 34(6): 671 (刘继雄, 赵爱民, 江海涛, 等. TA2-Q235B爆炸复合板钢侧组织 [4] 特征. 北京科技大学学报, 2012, 34(6):671) Xie  M  X,  Zhang  L  J,  Zhang  G  F,  et  al.  Microstructure  and mechanical  properties  of  CP-Ti/X65  bimetallic  sheets  fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181 [5] Jiang  H  T,  Yan  X  Q,  Liu  J  X,  et  al.  Effect  of  heat  treatment  on microstructure  and  mechanical  property  of  Ti-steel  explosive￾rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697 [6] Kundu  S,  Sam  S,  Mishra  B,  et  al.  Diffusion  bonding  of microduplex  stainless  steel  and  Ti  alloy  with  and  without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371 [7] Song  T  F,  Jiang  X  S,  Shao  Z  Y,  et  al.  Microstructure  and mechanical properties of vacuum diffusion bonded joints between Ti –6Al –4V  titanium  alloy  and  AISI316L  stainless  steel  using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68 [8] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure  of  hot-roll  bonding  TA2/Q235B  plate  using  DT4 interlayer. Mater Sci Eng A, 2017, 695: 120 [9] Ma Z X, Hu J, Li D F, et al. Overview of research and manufacture of layer-metal composite plate. Chin J Rare Met, 2003, 27(6): 799 (马志新, 胡捷, 李德富, 等. 层状金属复合板的研究和生产现状. 稀有金属, 2003, 27(6):799) [10] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739 [11] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386 [12] Wang  J  Z,  Yan  X  B,  Wang  W  Q,  et  al.  Summarization  of  the rolling Ti-steel composite plates process. Mater Rev, 2005, 19(4): 61 (王敬忠, 颜学柏, 王韦琪, 等. 轧制钛−钢复合板工艺综述. 材料 导报, 2005, 19(4):61) [13] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin (Engl Lett), 2013, 26(6): 754 [14] Yu  C,  Qi  Z  C,  Yu  H,  et  al.  Microstructural  and  mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664 [15] Lee  M  K,  Lee  J  G,  Choi  Y  H,  et  al.  Interlayer  engineering  for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105 [16] Ke S R, Xu X H, Xiang Z D. Feasibility of cladding Ti to carbon steel by diffusion bonding followed by hot-rolling // Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. Shenzhen, 2015: 1961 [17] Jiang  H  T,  Yan  X  Q,  Liu  J  X,  et  al.  Diffusion  behavior  and mathematical  model  of  Ti-steel  explosive  clad  plate  during  heat treatment. Rare Met Mater Eng, 2015, 44(4): 972 [18] 表 2    图 10 中各点的元素含量(原子数分数) Table 2    Element composition of each point in Fig. 10 % Point Ti Fe C 1 83.57 1.73 14.7 2 4.13 95.87 ― 3 81.97 0.65 17.38 4 0.83 61.17 38.01 5 92.04 1.51 6.54 6 0.49 88.83 10.68 白于良等: 感应加热温度对冷−热轧制成形钛/钢复合板界面的影响 · 1645 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有