正在加载图片...
·1308. 工程科学学报,第40卷,第11期 于稀土金属高纯化研究,可以成功实现超低氧含量 of RE-O RE =Gd,Tb,Dy,Er)solid solutions.J Alloys Compd, 稀土金属的制备.最优工艺条件可以将稀土金属的 1999,282(1-2):101 气态杂质质量分数限制在5×10-以下 [10]Okabe T H,Hirota K,Kasai E,et al.Thermodynamic properties of oxygen in RE-O (RE Gd,Tb,Dy,Er)solid solutions.JAl (2)102示踪同位素标记技术表明金属的表面 loys Compd,1998,279(2):184 氧化层并不能阻碍氧在稀土金属中的迁移,因此活 [11]Barin I.Thermochemical Data of Pure Substances.3th Ed.Basel 性金属除气法过程中,氧杂质可以从稀土金属内部 VCH,Weinheim,1993 [12]Okabe T H,Deura T N,Oishi T,et al.Electrochemical deoxida- 顺利到迁移表面,并进一步扩散到表面的活性金属 tion of yttrium-oxygen solid solutions.J Alloys Compd,1996, 镀层中,达到除氧效果 237(1-2):150 (3)氢等离子体电弧产生的特殊温度梯度除了 [13]Okabe T H,Deura T N,Oishi T,et al.Thermodynamic proper- 熔融金属样品,破坏表层氧化膜,还能导致熔体内的 ties of oxygen in yttrium-oxygen solid solutions.Metall Mater 液相对流.这种流体场不断将金属内部的氧杂质携 Trans B,1996,27(5):841 [14]Volkov V T,lonov A M,Nikiforova T V.Ultrapurification of yt- 带至气液相界层,与冲击表面的强还原性氢等离子 trium metal from oxide to single crystal:results and perspectives. 体反应,实现氧杂质的高效脱除 Vacm,1999,53(1-2):105 (4)CALPHAD相图数据库表明,当活性固溶氢 [15]Lee C K,Park J S,Yeon S H,et al.Modeling of solid-state 原子除氧反应的吉布斯自由能为负,将普通氢气还 electrotransport for purification of gadolinium.Met Mater Int, 2001,7(4):343 原的热力学禁阻状态改变为活性固溶氢原子还原的 [16]Mimura K,Kornukai T,Isshiki M.Purification of chromium by 热力学可行状态.由于吉布斯自由能的变化.提纯 hydrogen plasma-are zone melting.Mater Sci Eng A,2005,403 工艺中采用大于8×10-4的固溶氢质量分数会取得 (1-2):11 更佳的提纯效果,这一预测与实验结果一致 [17]Isshiki M.Purification of rare earth metals.Vacuum,1996,47 (6-8):885 参考文献 [18]Li G L,Li L,Miao R Y,et al.Research on the removal of im- [1]Yamada Y,Miura M,Tajima K,et al.Film thickness change of purity elements during ultra-high purification process of terbium. switchable mirrors using Mg3Y alloy thin films due to hydrogena- Vacuum,2016,125:21 tion and dehydrogenation.Solar Energy Mater Solar Cells,2014, [19]Li G L,Li L,Yang C,et al.Removal of gaseous impurities from 126:237 terbium by hydrogen plasma arc melting.Int J Hydrogen Energy, [2]Ngene P.Radeva T.Slaman M,et al.Seeing hydrogen in colors: 2015,40(25):7943 low-cost and highly sensitive eye readable hydrogen detectors.Ad [20]Li G L,Tian F,Li L,et al.Application of hydrogen plasma arc Funct Mater,2014,24(16):2374 melting technique on refining refractory metals.Rare Met Mater [3]Kalisvaart W P,Niessen R A H,Notten P H L.Electrochemical Eng,2015,44(3):775 hydrogen storage in MgSe alloys:a comparative study between thin (李国玲,田丰,李里,等.氢等离子体电弧熔炼技术在难熔金 films and bulk materials.J Alloys Compd,2006,417(1-2):280 属提纯中的应用.稀有金属材料与工程,2015,44(3):75) [4]Chen J,Fu J,Fu K,et al.Combining catalysis and hydrogen [21]Li G L,Guo H,Li L,et al.Purification of terbium by means of storage in direct borohydride fuel cells:towards more efficient en- argon and hydrogen plasma arc melting.J Alloys Compd,2016 ergy utilization.J Mater Chem A,2017,5:14310 659:1 [5]Zhang H W,Zheng X Y,Liu Y,et al.Application and develop- [22]Li G L,Li L,Fu K,et al.Hydrogen in-situ refining method for pre- ment of rare earth-based hydrogen storage materials.J Chin Soc paring high purity gadolinium.J Alloys Compd,2015,648:29 Rare Earths,2016,34(1):1 [23]Li G L,Li L,Hao J L,et al.Investigation of oxygen diffusion be- (张怀伟,郑鑫遥,刘洋,等.稀土元素在储氢材料中的应用 havior in terbium using 0-18(2)isotopic tracking by high resolu- 进展.中国稀土学报,2016,34(1):1) tion SIMS.Mater Lett,2016,176:253 [6]Zhang H W,Zheng X Y,Wang T,et al.Significantly improved [24]Fu K,Li G L,Li J G,et al.Study on the thermodynamics of the hydrogen desorption property of La2 Mg alloy modified with Ni-Al gadolinium-hydrogen binary system H/Gd =0.0-2.0)and im- nanocrystalline.Intermetallics,2016,70:29 plications to metallic gadolinium purification.J Alloys Compd [7]Zheng Z G.Zhong X C.Su K P,et al.Magnetic properties and 2016,673:131 large magnetocaloric effects in amorphous Gd-Al-Fe alloys for [25]Fu K,Li G L,Li J G,et al.Experimental study and thermody- magnetic refrigeration.Sci China Phys Mech Astron,2011,54 namic assessment of the dysprosium-hydrogen binary system. (7):1267 Alloys Compd,2017,696:60 [8]Xu Z Y,Hui X,Wang E R,et al.Gd-Dy-Al-Co bulk metallic [26]Tian F,Li G L,Li L,et al.Advance in solid-state purification glasses with large magnetic entropy change and refrigeration capac- technology for metals.J Alloys Compd,2014,592:176 ity.J Alloys Compd,2010,504(Suppl 1):S146 [27]Li L,Li G L,Xu L,et al.A new process of manufacturing "oxy- [9]Hirota K,Okabe T H,Saito F,et al.Electrochemical deoxidation gen-free"Gd.Rare Met Mater Eng,2016,45(10):2509工程科学学报,第 40 卷,第 11 期 于稀土金属高纯化研究,可以成功实现超低氧含量 稀土金属的制备. 最优工艺条件可以将稀土金属的 气态杂质质量分数限制在 5 伊 10 - 5以下. (2) 18O2 示踪同位素标记技术表明金属的表面 氧化层并不能阻碍氧在稀土金属中的迁移,因此活 性金属除气法过程中,氧杂质可以从稀土金属内部 顺利到迁移表面,并进一步扩散到表面的活性金属 镀层中,达到除氧效果. (3)氢等离子体电弧产生的特殊温度梯度除了 熔融金属样品,破坏表层氧化膜,还能导致熔体内的 液相对流. 这种流体场不断将金属内部的氧杂质携 带至气液相界层,与冲击表面的强还原性氢等离子 体反应,实现氧杂质的高效脱除. (4)CALPHAD 相图数据库表明,当活性固溶氢 原子除氧反应的吉布斯自由能为负,将普通氢气还 原的热力学禁阻状态改变为活性固溶氢原子还原的 热力学可行状态. 由于吉布斯自由能的变化. 提纯 工艺中采用大于 8 伊 10 - 4的固溶氢质量分数会取得 更佳的提纯效果,这一预测与实验结果一致. 参 考 文 献 [1] Yamada Y, Miura M, Tajima K, et al. Film thickness change of switchable mirrors using Mg3Y alloy thin films due to hydrogena鄄 tion and dehydrogenation. Solar Energy Mater Solar Cells, 2014, 126: 237 [2] Ngene P, Radeva T, Slaman M, et al. Seeing hydrogen in colors: low鄄cost and highly sensitive eye readable hydrogen detectors. Adv Funct Mater, 2014, 24(16): 2374 [3] Kalisvaart W P, Niessen R A H, Notten P H L. Electrochemical hydrogen storage in MgSc alloys: a comparative study between thin films and bulk materials. J Alloys Compd, 2006, 417(1鄄2): 280 [4] Chen J, Fu J, Fu K, et al. Combining catalysis and hydrogen storage in direct borohydride fuel cells: towards more efficient en鄄 ergy utilization. J Mater Chem A, 2017, 5: 14310 [5] Zhang H W, Zheng X Y, Liu Y, et al. Application and develop鄄 ment of rare earth鄄based hydrogen storage materials. J Chin Soc Rare Earths, 2016, 34(1): 1 (张怀伟, 郑鑫遥, 刘洋, 等. 稀土元素在储氢材料中的应用 进展. 中国稀土学报, 2016, 34(1): 1) [6] Zhang H W, Zheng X Y, Wang T, et al. Significantly improved hydrogen desorption property of La2Mg17 alloy modified with Ni鄄Al nanocrystalline. Intermetallics, 2016, 70: 29 [7] Zheng Z G, Zhong X C, Su K P, et al. Magnetic properties and large magnetocaloric effects in amorphous Gd鄄鄄 Al鄄鄄 Fe alloys for magnetic refrigeration. Sci China Phys Mech Astron, 2011, 54 (7): 1267 [8] Xu Z Y, Hui X, Wang E R, et al. Gd鄄鄄Dy鄄鄄Al鄄鄄 Co bulk metallic glasses with large magnetic entropy change and refrigeration capac鄄 ity. J Alloys Compd, 2010, 504(Suppl 1): S146 [9] Hirota K, Okabe T H, Saito F, et al. Electrochemical deoxidation of RE鄄O (RE = Gd, Tb, Dy, Er) solid solutions. J Alloys Compd, 1999, 282(1鄄2): 101 [10] Okabe T H, Hirota K, Kasai E, et al. Thermodynamic properties of oxygen in RE鄄O (RE = Gd, Tb, Dy, Er) solid solutions. J Al鄄 loys Compd, 1998, 279(2): 184 [11] Barin I. Thermochemical Data of Pure Substances. 3th Ed. Basel: VCH, Weinheim, 1993 [12] Okabe T H, Deura T N, Oishi T, et al. Electrochemical deoxida鄄 tion of yttrium鄄oxygen solid solutions. J Alloys Compd, 1996, 237(1鄄2): 150 [13] Okabe T H, Deura T N, Oishi T, et al. Thermodynamic proper鄄 ties of oxygen in yttrium鄄oxygen solid solutions. Metall Mater Trans B, 1996, 27(5): 841 [14] Volkov V T, Ionov A M, Nikiforova T V. Ultrapurification of yt鄄 trium metal from oxide to single crystal: results and perspectives. Vacuum, 1999, 53(1鄄2): 105 [15] Lee C K, Park J S, Yeon S H, et al. Modeling of solid鄄state electrotransport for purification of gadolinium. Met Mater Int, 2001, 7(4): 343 [16] Mimura K, Kornukai T, Isshiki M. Purification of chromium by hydrogen plasma鄄arc zone melting. Mater Sci Eng A, 2005, 403 (1鄄2): 11 [17] Isshiki M. Purification of rare earth metals. Vacuum, 1996, 47 (6鄄8): 885 [18] Li G L, Li L, Miao R Y, et al. Research on the removal of im鄄 purity elements during ultra鄄high purification process of terbium. Vacuum, 2016, 125: 21 [19] Li G L, Li L, Yang C, et al. Removal of gaseous impurities from terbium by hydrogen plasma arc melting. Int J Hydrogen Energy, 2015, 40(25): 7943 [20] Li G L, Tian F, Li L, et al. Application of hydrogen plasma arc melting technique on refining refractory metals. Rare Met Mater Eng, 2015, 44(3): 775 (李国玲, 田丰, 李里, 等. 氢等离子体电弧熔炼技术在难熔金 属提纯中的应用. 稀有金属材料与工程, 2015, 44(3): 775) [21] Li G L, Guo H, Li L, et al. Purification of terbium by means of argon and hydrogen plasma arc melting. J Alloys Compd, 2016, 659: 1 [22] Li G L, Li L, Fu K, et al. Hydrogen in鄄situ refining method for pre鄄 paring high purity gadolinium. J Alloys Compd, 2015, 648: 29 [23] Li G L, Li L, Hao J L, et al. Investigation of oxygen diffusion be鄄 havior in terbium using O鄄18(2) isotopic tracking by high resolu鄄 tion SIMS. Mater Lett, 2016, 176: 253 [24] Fu K, Li G L, Li J G, et al. Study on the thermodynamics of the gadolinium鄄hydrogen binary system (H/ Gd = 0郾 0 - 2郾 0) and im鄄 plications to metallic gadolinium purification. J Alloys Compd, 2016, 673: 131 [25] Fu K, Li G L, Li J G, et al. Experimental study and thermody鄄 namic assessment of the dysprosium鄄hydrogen binary system. J Alloys Compd, 2017, 696: 60 [26] Tian F, Li G L, Li L, et al. Advance in solid鄄state purification technology for metals. J Alloys Compd, 2014, 592: 176 [27] Li L, Li G L, Xu L, et al. A new process of manufacturing “oxy鄄 gen鄄free冶 Gd. Rare Met Mater Eng, 2016, 45(10): 2509 ·1308·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有