正在加载图片...
光程将减少1/2个波长。干涉图案也随之改变,亮环的半径会减小,并占据以前暗环所在的 位置。如果M再向分束器移动14波长,亮环半径将再次减小,亮环和暗环再次交换位置, 这种新的分布与原来的图案完全一样。 将反射镜缓慢移动一段可测量的距离dm,数得条纹图案恢复到原先状态的次数m,则可 计算光的波长: 2d = m 如果已知光的波长,可以用同样的方法来测量dm。 注意:补偿板的使用 在图1中,注意到一束光仅通过分束器的玻璃一次,而另一束光通过它三次。假如使用 类似激光这样的高相干单色光源,这没有问题。但使用其它光源则另当别论了。 被分开的两束光的有效光程差增加了,从而降低了在观察屏位置光束间的相干性,这会 使干涉图案变模糊。 补偿片与分束器相同,仅仅是没有反射涂层。光路中插入补偿器后(图1),两束光通 过相同厚度的玻璃,从而消除了这个问题。 特外曼一格临干涉仪 特外曼-格临干涉仪是迈克耳逊干涉仪的一种变化,用来测试光学元器件。将透镜放置 在光路上,使一束干涉光经过该测试透镜,透镜的任何不规则都可从干涉图案的结果中检测 出,尤其是球差、慧差和象散在干涉图案中表现出特殊的变化。 Partial Mirrors Movable 5a… 4i: :72÷=1 k:2 ”88- 大 03: Screen Figure 3.Twyman-Green Interferometer Figure 4.Fabry-Perot Interferometer 法布里一珀罗干涉仪 在法布里珀罗干涉仪中,两面反射镜平行并列放置,组成一个反射腔。进入腔内的光 在腔内被来回反射(图4),每次反射都会有一部分光被透射,由此入射光束被分束成一系 列光束。由于透射光束是从一条入射光束分束出来,因此它们之间有固定的相位关系(假定 使用高度相干的光源)。 各透射光束之间的相位关系取决于光束进入反射腔的入射角和两面反射镜的间距。得到 的圆环干涉图案与迈克耳逊干涉图案相似,但条纹更细、更亮,其分布在空间也展的更宽。 法布里-珀罗条纹的细锐使得它成为高分辨率光谱测定的有用工具。 类似于迈克耳逊干涉仪,当可移动反射镜相对固定反射镜移动时,干涉条纹会移动。当 移动距离等于光源波长的12时,新的干涉图案与原图案一样。光程将减少 1/2 个波长。干涉图案也随之改变,亮环的半径会减小,并占据以前暗环所在的 位置。如果M1再向分束器移动 1/4 波长,亮环半径将再次减小,亮环和暗环再次交换位置, 这种新的分布与原来的图案完全一样。 将反射镜缓慢移动一段可测量的距离dm,数得条纹图案恢复到原先状态的次数m,则可 计算光的波长: m d m 2 λ = 如果已知光的波长,可以用同样的方法来测量dm。 注意:补偿板的使用 在图 1 中,注意到一束光仅通过分束器的玻璃一次,而另一束光通过它三次。假如使用 类似激光这样的高相干单色光源,这没有问题。但使用其它光源则另当别论了。 被分开的两束光的有效光程差增加了,从而降低了在观察屏位置光束间的相干性,这会 使干涉图案变模糊。 补偿片与分束器相同,仅仅是没有反射涂层。光路中插入补偿器后(图 1),两束光通 过相同厚度的玻璃,从而消除了这个问题。 特外曼-格临干涉仪 特外曼-格临干涉仪是迈克耳逊干涉仪的一种变化,用来测试光学元器件。将透镜放置 在光路上,使一束干涉光经过该测试透镜,透镜的任何不规则都可从干涉图案的结果中检测 出,尤其是球差、慧差和象散在干涉图案中表现出特殊的变化。 法布里-珀罗干涉仪 在法布里-珀罗干涉仪中,两面反射镜平行并列放置,组成一个反射腔。进入腔内的光 在腔内被来回反射(图 4),每次反射都会有一部分光被透射,由此入射光束被分束成一系 列光束。由于透射光束是从一条入射光束分束出来,因此它们之间有固定的相位关系(假定 使用高度相干的光源)。 各透射光束之间的相位关系取决于光束进入反射腔的入射角和两面反射镜的间距。得到 的圆环干涉图案与迈克耳逊干涉图案相似,但条纹更细、更亮,其分布在空间也展的更宽。 法布里-珀罗条纹的细锐使得它成为高分辨率光谱测定的有用工具。 类似于迈克耳逊干涉仪,当可移动反射镜相对固定反射镜移动时,干涉条纹会移动。当 移动距离等于光源波长的 1/2 时,新的干涉图案与原图案一样。 5
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有