正在加载图片...
alanthamine and galanthamine-galanthaminium salts. Bioorg. Med. hem.Le.2000,10,637-639 10 cells/well (200 ul) into 96-well plates and allowed to adhere (11) Carlier, P. R. Du, D. M.: Han, Y. F. Liu, J Perola, E; W and grow. When cells reached the required confluence, they were L. D ; Pang. Y. P. Dimerization of an inactive fragment of huperzine laced into serum-free medium and treated with the synthesized A produce a drug with twice the potency of the natural product Chem,lnt.Ed.2000,39,1775-1777 compounds 5h and 5i. Twenty-four hours later the surv ( 12)Feng, S; Wang. Z; He, X; Zheng, S: Xia, Y. Jiang, H; Tang, X: as determined by MTT assay. Briefly, after incubat Bai, D. Bis-huperzine B: highly potent ar L of MTT(5 mg/mL: Sigma, St Louis, MO)at 37 erase inhibitors. J Med. Chem. 2005. 48. 655-657 living cells containing MTT formazon crystals were (13)Munoz-Torrero, D: Camps, P. Dimeric and hybrid anti-Alzheime in 200 uL of dimethyl sulfoxide(DMsO, Sigma). The absor- drug candidates. Curr. Med. Chem. 2006. 13. 399-422 ance of each well was measured using a microculture plate (14)Harel, M. Schalk, L; Ehret-Sabatier, L; Bouet, F. Goeldner. M. HirtI reader with a test wavelength of 570 nm and a reference C ; Axelsen, P H. Silman, L; Sussman, J. L. Quatemary ligand binding Proc. Natl. Acad. Sci. U.S.A. 1993. 90. 9031-9035 Acknowledgment. We thank the National Natural Science (15)Li, W: Hao, J; Tang, Y; Chen, Y; Qiu, Z Comparative studies of Foundation of China(Grants 30472088, 30772553, and cophore. Acta. Pharmacol Sin. 2005, 26, 334-338 30371731), the Program of Shanghai Subject Chief Scientist (16)Ennis, C. Haroun, F. and Lattimer, N. Can the effects of meptazinol Grant 06XD14011), and the Major Basic Research Project of aceyl guinea-pig isolated ileum be explained by inhibition of Shanghai Municipal Science and Technology Commission (17) Chen, Y Studies on the Synthesis, Resolution and Optical Isomers (Grant 07DJ14005) for financial support. We also gratefully Meptazinol. Ph. D. Dissertation, Fudan University, Shanghai, P. R thank Dr Manuela Bartolini(University of Bologna, Italy) and China. 2004 Dr. Margarita Dinamarca(Pontificia Universidad Catolica, ( 18)Xie, Q: Tang, Yun ; Li, w: Wang, X; Qiu, Z Investigation of the Chile) for their valuable suggestions in the experiments on binding mode of (-)-meptazinol and bis-meptazinol derivatives on acetylcholinesterase using a molecular docking method. J Mol Model. AChE-induced AB aggregation. 2006.12,390-397 (19) Savin Note Added after ASAP Publication. This manuscript was Chiasserini. L: Pellerano. C: Novellino. E: Mckissic. D: Saxena released ASAP on March 12, 2008 with errors in the Experimental and Acknowledgment Sections. The correct version posted recognition sites. Rational design of novel, selective, and highly potent March 15. 2008 cholinesterase inhibitors. Med. Chem. 2003. 46.1-4 (20) Bartolini, M: Bertucci, C. Cavrini, V: Andrisano, V. B-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies References Biochem. Pharmacol. 2003. 65 407-410 (1)Walsh, D. M ; Selkoe, DJ the molecular basis of memory (21)St dicarboxylic acid esters as 2004,44,181-193 dealkylating agents J. Org. Chem. 1973, 18, 1652-1657 (2)Dekosky, S. T Pathology ys of Alzheimers disease with (22) Pecherer, B. Stumpf, J; Brossi, A. Synthesis and characteristics of n update on new developments in treatment. J. Am. Geriatr. Soc. various 3-benzazocines, a class of potential analgesics. Helv. Chim. 2003 Acta1970,53,763-770. German) ()Bartus, R. T; Dean, R. L; Beer, B: Lippa, A.S. The cholinergic (23)Hobson, J. D. McCluskey, J. G Cleavage of tertiary bases with phenyl pothesis of geriatric memory dysfunction. Science 1982, 217, 408- chloroformate: the reconversion of 21-deoxyajmaline into ajmaline J.Chem.Soc.C1967,2015-2017 (4)Soreq, H: Seidman, S. Acetylcholinesterases-new roles for an old (24) Abdel-Monem, M. M; Pe se, P. S. N-Demethyla morphine and structurally related compounds with chloroformate (5)Alvar Bronfman. F. Perez. C. A: Vicente, M: Garrido, J. esters. J. Med. Chem. 1972. 15. 208-210 (25)Lu, M. Design and Synthesis of Meptazinol Prodrug and Bivalent Ph.D. Dissertation, Fudan University, Shang P. R. China. 2005 Opazo, C: Alarcon, R: Garrido, J. Inestrosa, N. C. (26)Li. w: Wang, X. Lau, C ; Tang. Y. Xie. Q: Qiu, Z Conformational Acetylcholinesterase promotes the re-analysis of(+)-meptazinol: an opioid with mixed analgesic phar. by forming a complex with the growing fibrils. J. Mol. Biol Pharmacol. Sin. 2006. 27 (27)Decker, M. Krauth, F: Lehmann, J. Novel tricyclic quinazolinimines (7)De Ferran, G. V. Canales. M. A. Shin. I Weiner, L. M.: Silman, L. and related tetracyclic nitrogen bridgehead compounds as cholines Inestrosa, N. C. A structural motif of acetylcholinesterase that promotes inhibitors with selectivity towards butyrylcholinesterase. Bioorg loid beta-peptide fibril formation. Biochemistry 2001, 40, 10447 Med.Chem.2006,14,1966-1977 ( 8)Inestrosa N. C: Alvarez. A: Perez. C. A: Moreno, R. D (28)Nicolet, Y: Lockridge, O; Masson, P: Fontecilla-Camps, J. C, M: Linker, C; Casanueva, O. L; Soto, C: Garrido, J. Acetylcho Nachon, F Crystal structure of human butyrylcholinesterase and inesterase accelerates assembly of amyloid-B-peptides into Alzhe. its complexes with substrate and products. J. Biol. Che. 2003, 278, 41141-41147. imer's fibrils: possible role of the peripheral site of the enzyme. Neuron (29) Harel, M. Sussman, J. L: Krejci, E: Bon, S: Chanal, P; Massoulio 9)(a) Pang. Y.P. Quiram, P; Jelacic, T Hong, F Brimijoin, S. Highly J; Silman, I. Conversion of acetylcholine potent, selective and low cost bis-tetrahydroaminacrine inhibitors of erase: modeling and mutagenesis bioche 2,89,10827-10 (0)Greig. N. H; Lahiri, D. K: Sambamurti, K. Butyrylcholinesterase isease. J. BioL. Chem. 1996. 271. 23646-23649.(b)Carlier, P. R important new target in Alzheimers disease therapy. Int. Psycho. natr.2002,l4( Suppl.1).77-91 Wong H.S. Pang. Y.P. Evaluation of short-tether bis- THA AChE (31)Birks, J; Grimley Evans, J. lakovidou, V: Tsolaki, M Rivastigmine inhibitors. A further test of the dual binding site hypothesis. Bioorg Med. Chem. 1999, 7, 351-357.(c)Rydberg, E H; Brumshtein, B. CD001191 Greenblatt, H. M.: Wong. D. M.: Shaya. D. Williams, L. D. Carlier (32)Bourne, Y. Radic, Z; Sulzenbacher, G ; Kim, E: Taylor, P; Marchot P Substrate and produ ing through the active center gorge binding of bis(5 )-tacrine produces a dramatic rearrangement in the binding. J. Biol. Che. 2006. 281, 29256-29267 active-site gorge. J. Med. Chen. 2006. 49, 5491-5500 (3)Jones, G: Willett, P. Glen, R. C. Leach, A. R: Taylor, R. (10)(a)Mary, A: Renko, D. Z: Guillou, C; Thal, C Potent acetylche inesterase inhibitors: design, synthesis, and structure-activity relation ships of bis-interacting ligands in the galanthamine series. Bioorg. Mec c Mol. Biol. 1997, 267.o of a genetic algorithm for flexible docking ao. Chem. 1998. 6, 1835-1850.(b)Guillou, C: Mary, A Renko, D Z Dong, C. Z; Heymans, F; Chen, H. Z Pharma Gras, E: Thal, C. Potent acetylcholinesterase inhibitors: des PMS777, a new AChE inhibitor with PAF antago ynthesis and structure-activity relationships of alkylene linked bis- J. Neuropsychopharmacol. 2007, 10, 21-2100 U/mL penicillin, and 100 µg/mL streptomycin in a humidified atmosphere containing 5% CO2 at 37 °C. Cells were plated at 5 × 104 cells/well (200 µl) into 96-well plates and allowed to adhere and grow. When cells reached the required confluence, they were placed into serum-free medium and treated with the synthesized compounds 5h and 5i. Twenty-four hours later the survival of cells was determined by MTT assay. Briefly, after incubation with 20 µL of MTT (5 mg/mL; Sigma, St. Louis, MO) at 37 °C for 3 h, living cells containing MTT formazon crystals were solubilized in 200 µL of dimethyl sulfoxide (DMSO, Sigma). The absor￾bance of each well was measured using a microculture plate reader with a test wavelength of 570 nm and a reference wavelength of 655 nm. Acknowledgment. We thank the National Natural Science Foundation of China (Grants 30472088, 30772553, and 30371731), the Program of Shanghai Subject Chief Scientist (Grant 06XD14011), and the Major Basic Research Project of Shanghai Municipal Science and Technology Commission (Grant 07DJ14005) for financial support. We also gratefully thank Dr. Manuela Bartolini (University of Bologna, Italy) and Dr. Margarita Dinamarca (Pontificia Universidad Católica, Chile) for their valuable suggestions in the experiments on AChE-induced A aggregation. Note Added after ASAP Publication. This manuscript was released ASAP on March 12, 2008 with errors in the Experimental and Acknowledgment Sections. The correct version posted on March 15, 2008. References (1) Walsh, D. M.; Selkoe, D. J. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004, 44, 181–193. (2) Dekosky, S. T. Pathology and pathways of Alzheimer’s disease with an update on new developments in treatment. J. Am. Geriatr. Soc. 2003, 51, 314–320. (3) Bartus, R. T.; Dean, R. L.; Beer, B.; Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408– 414. (4) Soreq, H.; Seidman, S. Acetylcholinesterasessnew roles for an old actor. Nat. ReV. Neurosci. 2001, 2, 294–302. (5) Alvarez, A.; Bronfman, F.; Pérez, C. A.; Vicente, M.; Garrido, J.; Inestrosa, N. C. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci. Lett. 1995, 201, 49–52. (6) Alvarez, A.; Opazo, C.; Alarcón, R.; Garrido, J.; Inestrosa, N. C. Acetylcholinesterase promotes the aggregation of amyloid--peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol. 1997, 272, 348–361. (7) De Ferrari, G. V.; Canales, M. A.; Shin, I.; Weiner, L. M.; Silman, I.; Inestrosa, N. C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 2001, 40, 10447– 10457. (8) Inestrosa, N. C.; Alvarez, A.; Pérez, C. A.; Moreno, R. D.; Vicente, M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J. Acetylcho￾linesterase accelerates assembly of amyloid--peptides into Alzhe￾imer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996, 16, 881–891. (9) (a) Pang, Y. P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S. Highly potent, selective and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: steps toward novel drugs for treating Alzheimer’s disease. J. Biol. Chem. 1996, 271, 23646–23649. (b) Carlier, P. R.; Han, Y. F.; Chow, E. S. H.; Li, C. P. L.; Wang, H.; Lieu, T. X.; Wong, H. S.; Pang, Y. P. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Bioorg. Med. Chem. 1999, 7, 351–357. (c) Rydberg, E. H.; Brumshtein, B.; Greenblatt, H. M.; Wong, D. M.; Shaya, D.; Williams, L. D.; Carlier, P. R.; Pang, Y. P.; Silman, I.; Sussman, J. L. Complexes of alkylene￾linked tacrine dimers with Torpedo californica acetylcholinesterase: binding of bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem. 2006, 49, 5491–5500. (10) (a) Mary, A.; Renko, D. Z.; Guillou, C.; Thal, C. Potent acetylcho￾linesterase inhibitors: design, synthesis, and structure-activity relation￾ships of bis-interacting ligands in the galanthamine series. Bioorg. Med. Chem. 1998, 6, 1835–1850. (b) Guillou, C.; Mary, A.; Renko, D. Z.; Gras, E.; Thal, C. Potent acetylcholinesterase inhibitors: design, synthesis and structure-activity relationships of alkylene linked bis￾galanthamine and galanthamine-galanthaminium salts. Bioorg. Med. Chem. Lett. 2000, 10, 637–639. (11) Carlier, P. R.; Du, D. M.; Han, Y. F.; Liu, J.; Perola, E.; Williams, I. D.; Pang, Y. P. Dimerization of an inactive fragment of huperzine A produce a drug with twice the potency of the natural product. Angew. Chem., Int. Ed. 2000, 39, 1775–1777. (12) Feng, S.; Wang, Z.; He, X.; Zheng, S.; Xia, Y.; Jiang, H.; Tang, X.; Bai, D. Bis-huperzine B: highly potent and selective acetylcholinest￾erase inhibitors. J. Med. Chem. 2005, 48, 655–657. (13) Munoz-Torrero, D.; Camps, P. Dimeric and hybrid anti-Alzheimer drug candidates. Curr. Med. Chem. 2006, 13, 399–422. (14) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P. H.; Silman, I.; Sussman, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 9031–9035. (15) Li, W.; Hao, J.; Tang, Y.; Chen, Y.; Qiu, Z. Comparative studies of X-ray determined meptazinol enantiomers with analgesic pharma￾cophore. Acta. Pharmacol. Sin. 2005, 26, 334–338. (16) Ennis, C.; Haroun, F.; and Lattimer, N. Can the effects of meptazinol on the guinea-pig isolated ileum be explained by inhibition of acetylcholinesterase? J. Pharm. Pharmacol. 1986, 38, 24–27. (17) Chen, Y. Studies on the Synthesis, Resolution and Optical Isomers of Meptazinol. Ph.D. Dissertation, Fudan University, Shanghai, P. R. China, 2004. (18) Xie, Q.; Tang, Yun.; Li, W.; Wang, X.; Qiu, Z. Investigation of the binding mode of (-)-meptazinol and bis-meptazinol derivatives on acetylcholinesterase using a molecular docking method. J. Mol. Model. 2006, 12, 390–397. (19) Savini, L.; Gaeta, A.; Fattorusso, C.; Catalanotti, B.; Campiani, G.; Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.; Saxena, A. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J. Med. Chem. 2003, 46, 1–4. (20) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. -Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol. 2003, 65, 407–416. (21) Smissman, E. E.; Makriyannis, A. Azodicarboxylic acid esters as dealkylating agents. J. Org. Chem. 1973, 18, 1652–1657. (22) Pecherer, B.; Stumpf, J.; Brossi, A. Synthesis and characteristics of various 3-benzazocines, a class of potential analgesics. HelV. Chim. Acta 1970, 53, 763–770. (German). (23) Hobson, J. D.; McCluskey, J. G. Cleavage of tertiary bases with phenyl chloroformate: the reconversion of 21-deoxyajmaline into ajmaline. J. Chem. Soc. C 1967, 2015–2017. (24) Abdel-Monem, M. M.; Porgoghese, P. S. N-Demethylation of morphine and structurally related compounds with chloroformate esters. J. Med. Chem. 1972, 15, 208–210. (25) Lu, M. Design and Synthesis of Meptazinol Prodrug and Bivalent Ligands as Analgesics. Ph.D. Dissertation, Fudan University, Shanghai, P. R. China, 2005. (26) Li, W.; Wang, X.; Lau, C.; Tang, Y.; Xie, Q.; Qiu, Z. Conformational re-analysis of (+)-meptazinol: an opioid with mixed analgesic phar￾macophores. Acta. Pharmacol. Sin. 2006, 27, 1247–1252. (27) Decker, M.; Krauth, F.; Lehmann, J. Novel tricyclic quinazolinimines and related tetracyclic nitrogen bridgehead compounds as cholinest￾erase inhibitors with selectivity towards butyrylcholinesterase. Bioorg. Med. Chem. 2006, 14, 1966–1977. (28) Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J. C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. (29) Harel, M.; Sussman, J. L.; Krejci, E.; Bon, S.; Chanal, P.; Massoulio, J.; Silman, I. Conversion of acetylcholinesterase to butyrylcholinest￾erase: modeling and mutagenesis. Biochem. 1992, 89, 10827–10831. (30) Greig, N. H.; Lahiri, D. K.; Sambamurti, K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int. Psycho￾geriatr. 2002, 14 (Suppl. 1), 77–91. (31) Birks, J.; Grimley Evans, J.; Iakovidou, V.; Tsolaki, M. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. ReV. 2000, 4, CD001191. (32) Bourne, Y.; Radic, Z.; Sulzenbacher, G.; Kim, E.; Taylor, P.; Marchot, P. Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding. J. Biol. Chem. 2006, 281, 29256–29267. (33) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. (34) Li, J.; Huang, H.; Miezan Ezoulin, J. M.; Gao, X. L.; Massicot, F.; Dong, C. Z.; Heymans, F.; Chen, H. Z. Pharmacological profile of PMS777, a new AChE inhibitor with PAF antagonistic activity. Int. J. Neuropsychopharmacol. 2007, 10, 21–29. Bis-(-)-nor-meptazinols as Inhibitors Journal of Medicinal Chemistry, 2008, Vol. 51, No. 7 2035
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有