正在加载图片...
S.T. Mileiko Current Opinion in Solid State and Materials Science 9(2005)219-229 composite structures. One new way was illustrated above [ll] Mileiko ST, Kiko VM, Kolchin AA, Kurlov VN.Oxide in Fig. Il, and another one is applied to oxide/oxide com- produced by internal cryst method and their usage in posites with the results presented in Fig. 17 matrix composites. In: Kre Naslain R. Schneider h. ed 5. Conclusions [12] Mileiko ST, Kurlov VN, Kolchin AA, Kiiko VM. Fabrication, properties and usage of single-crystalline YAG fibres. J Eur Ceram 1. Single crystalline oxide fibres produced by using the oc2002;22(11:183l-7 internal crystallisation method provide a base for heat [13] Mileiko ST, Kiiko VM, Starostin MYu, Kolchin AA, Kozhevnikov LS. Fabrication and some properties of single crystalline mullite resistant composites with use temperature up to fibers. Scripta Mater 2001: 44(2): 249-55 1175C while using Ni-based-matrix and, perhaps, up [14] Rischer CH, Mileiko ST, Schneider H. Mullite single crystal fibers 1600oC while using a ceramic matrix oduce ternal crystallization method (ICM). J Eur Ceram 2. To reach the goal just formulated, a fine design of the (us) kiko vm. Mileiko sT. Evaluation of room temperature strength of such composites plays a synergetic role in providing high oxide fibres produced by the internal crystallization method. Compos Sci Technol1999;5913:1977-81. [16 Mileiko ST Oxide-fibre/Ni-based matrix composites- IIl: a creep 3. Brittleness of all-brittle oxide/oxide composites can be model and analysis of experimental data. Compos Sci Technol decreased by a number of the ways, which 2002:62(2):195-204 tirely on the behaviour of the interface. An [7 Wilson DM, Visser LR. High performance oxide fibers for metal and of non-brittle behaviour of an oxide/oxide composite ceramic composites. Presented at the processing of fibers and opposites conference, Barga, Italy, 2000 is presented in the pap [18] Dokko PC, Pask JA, Mazdiyasni Ks. High-temperature mechanical properties of mullite under compression. J Am Ceram Soc 1977: 60 Acknowledgements [19 Mileiko ST, Kiiko VM, Kolchin AA, Serebryakov AV, Korzhov VP, Starostin MYu, et al. Oxide-fibre/Ni-based matrix composites -1: cture. Compos Sci Technol 2002: 62(2) The work was partly supported by International Scienc nd Technology Centre, Project 2456, and Russian [20] Mileiko ST, Povarova KB, Serebryakov AV, Korzhov VP, Kolchi Foundation for Basic Research, Project 05-01-00802 Staff AA, Kiiko VM. et al. High temperature creep properties of sapphire of Laboratory of Reinforced Systems of Solid State Physics 44(10): 2463-9 Institute participated in the experimental work. Special [21] Asthana R, Mileiko ST, Sobczak N. Wettability and interface thanks to A. Serebryakov, V. Kiiko, A. Kolchin, N. Pro- nsiderations in advanced heat-resistant Ni-base composites. Bull kopenko, A. Tolstun, L. Kozhevnikov, V. Kurlov, and Polish Acad Sci (Technical Sciences) 2006: 54(2): 147-66 A. Mizkevich [22 Mileiko ST. Composites reinforced with single crystalline oxide fibres: experiments and modeling. J Mater Sci, in [23] Asthana R, Tewari SN, Draper SL Strength degradation of sapphire References uperalloy. Metall Mater Trans 1998: 29A: 1527-30. [24] Asthana R, Tewari SN. Interface response to solidification in [] Stepanov AV. A future of metal processing. Leningrad: Machinost- pphire-reinforced Ni-base composites. Adv Compos Mater 2000 benie: 1963 in Russian]. 94:265-307 2] LaBelle Jr HE, Mlavsky Al Growth of sapphire filaments from the [25] Sutton WH, Feingold E. Role of interfacially active metals in the apparent adherence of nickel to sapphire. Materials science researcl 3] Mileiko ST. Oxide fibres. Strong fibres(Handbook of composites voL. 3. Plenum Press: 1966. P. 577-611 vol 1. Amsterdam: North-Holland: 1985. p 87-114. 26] Prokopenko VM, Mileiko ST. Evaluation of the fibre/matrix inter- 4 Mimura Y, Okamura Y, Komarava V, Ota Ch Jpn J Appl Phy face strength by the pushing-out of fibres of non-symmetrical cross- 1980:15:L269-75. section Compos Sci Technol 2001; 61(11): 1649-52 5]Oguri H, Yamamura H, Orito TJ Cryst Growth 1991: 110: 669-76. [27] Cain MG, Cain RL, Lewis MH, Gent [6] Burrus CA, Coldren LA. Growth of single-crystal sapphire-clad ruby hexaaluminate interphases. J Am Ceram Soc 1997: 800(7): 1873-6. lbers. Appl Phys Lett 1977: 31(6): 383-4 [28] Tu W, Lange FF, Evans AG. Concept for a damage tolerant ceramic [7 Mileiko ST, Kazmin VI. Crystallization of fibres inside a matrix composite with"strong"interfaces. J Am Ceram Soc 1996, 79: 417-24. 2165-72 y of fabrication of composites. J Mater Sci 1992: 27: [29] Kanka B, Schneider H. Aluminosilicate fiber/mullite matrix compos- ites with favorable high-temperature properties. J Eur Ceram Soc [8 Mileiko ST, Kazmin VI. Structure and mechanical properties of oxide 200020:619-23 fibre reinforced metal-matrix composites produced by the internal [30] Kolchin AA, Kiiko VM, Sarkissyan NS, Mileiko ST. Oxide/oxide crystallization method. Compos Sci Technol 1992: 45: 209-20 9] Kurlov VN, Kiiko VM, Kolchin AA, Mileiko ST. Sapphire fibres method. Compos Sci Tecl grown by a modified internal crystallization method. J Cryst Growth [31]Kolchin AA, Korzhov VP IV. Kiiko VM. Mileiko st. of a model sapphire/alumina composite. J Compos Mater, submitted [10 Mileiko ST, Kiiko VM, Sarkissyan NS, Starostin My, Gvozdeva SI Kolchin AA, et al. Microstructure and properties of AlzOr-AlsY3012 [32 Mileiko ST, Kiiko VM, Kolchin AA, Korzhov VP, Prokopenko VM. bre produced via internal crystallization route. Compos Sci Technol cide-fibre/Ni-based matrix composites- II: mechanical behavior 9995911):1763-72. Compos Sci Technol 2002: 62(2): 181-93composite structures. One new way was illustrated above, in Fig. 11, and another one is applied to oxide/oxide com￾posites with the results presented in Fig. 17. 5. Conclusions 1. Single crystalline oxide fibres produced by using the internal crystallisation method provide a base for heat￾resistant composites with use temperature up to 1175 C while using Ni-based-matrix and, perhaps, up 1600 C while using a ceramic matrix. 2. To reach the goal just formulated, a fine design of the oxide/Ni-alloy interface is necessary. The interface in such composites plays a synergetic role in providing high creep resistance to a composite. 3. Brittleness of all-brittle oxide/oxide composites can be decreased by a number of the ways, which depend entirely on the behaviour of the interface. An example of non-brittle behaviour of an oxide/oxide composite is presented in the paper. Acknowledgements The work was partly supported by International Science and Technology Centre, Project # 2456, and Russian Foundation for Basic Research, Project 05-01-00802. Staff of Laboratory of Reinforced Systems of Solid State Physics Institute participated in the experimental work. Special thanks to A. Serebryakov, V. Kiiko, A. Kolchin, N. Pro￾kopenko, A. Tolstun, L. Kozhevnikov, V. Kurlov, and A. Mizkevich. References [1] Stepanov AV. A future of metal processing. Leningrad: Machinost￾roenie; 1963 [in Russian]. [2] LaBelle Jr HE, Mlavsky AI. Growth of sapphire filaments from the melt. Nature 1967;216:574–5. [3] Mileiko ST. Oxide fibres. Strong fibres (Handbook of composites), vol. 1. Amsterdam: North-Holland; 1985. p. 87–114. [4] Mimura Y, Okamura Y, Komarava V, Ota Ch. Jpn J Appl Phys 1980;15:L269–75. [5] Oguri H, Yamamura H, Orito T. J Cryst Growth 1991;110:669–76. [6] Burrus CA, Coldren LA. Growth of single-crystal sapphire-clad ruby fibers. Appl Phys Lett 1977;31(6):383–4. [7] Mileiko ST, Kazmin VI. Crystallization of fibres inside a matrix: a new way of fabrication of composites. J Mater Sci 1992;27: 2165–72. [8] Mileiko ST, Kazmin VI. Structure and mechanical properties of oxide fibre reinforced metal–matrix composites produced by the internal crystallization method. Compos Sci Technol 1992;45:209–20. [9] Kurlov VN, Kiiko VM, Kolchin AA, Mileiko ST. Sapphire fibres grown by a modified internal crystallization method. J Cryst Growth 1999;204(4):499–504. [10] Mileiko ST, Kiiko VM, Sarkissyan NS, Starostin My, Gvozdeva SI, Kolchin AA, et al. Microstructure and properties of Al2O3–Al5Y3O12 fibre produced via internal crystallization route. Compos Sci Technol 1999;59(11):1763–72. [11] Mileiko ST, Kiiko VM, Kolchin AA, Kurlov VN. Oxide fibers produced by internal crystallization method and their usage in oxide– matrix composites. In: Krenkel W, Naslain R, Schneider H, editors. High temperature ceramic matrix composites. Weinheim: Wiley￾VCh; 2001. p. 633–8. [12] Mileiko ST, Kurlov VN, Kolchin AA, Kiiko VM. Fabrication, properties and usage of single-crystalline YAG fibres. J Eur Ceram Soc 2002;22(11):1831–7. [13] Mileiko ST, Kiiko VM, Starostin MYu, Kolchin AA, Kozhevnikov LS. Fabrication and some properties of single crystalline mullite fibers. Scripta Mater 2001;44(2):249–55. [14] Ru¨scher CH, Mileiko ST, Schneider H. Mullite single crystal fibers produced by the internal crystallization method (ICM). J Eur Ceram Soc 2003;23:3113–7. [15] Kiiko VM, Mileiko ST. Evaluation of room temperature strength of oxide fibres produced by the internal crystallization method. Compos Sci Technol 1999;59(13):1977–81. [16] Mileiko ST. Oxide–fibre/Ni-based matrix composites – III: a creep model and analysis of experimental data. Compos Sci Technol 2002;62(2):195–204. [17] Wilson DM, Visser LR. High performance oxide fibers for metal and ceramic composites. Presented at the processing of fibers and composites conference, Barga, Italy, 2000. [18] Dokko PC, Pask JA, Mazdiyasni KS. High-temperature mechanical properties of mullite under compression. J Am Ceram Soc 1977;60: 150–5. [19] Mileiko ST, Kiiko VM, Kolchin AA, Serebryakov AV, Korzhov VP, Starostin MYu, et al. Oxide–fibre/Ni-based matrix composites – I: fabrication and microstructure. Compos Sci Technol 2002;62(2): 167–79. [20] Mileiko ST, Povarova KB, Serebryakov AV, Korzhov VP, Kolchin AA, Kiiko VM, et al. High temperature creep properties of sapphire– fibre/titanium–aluminide–matrix composites. Scripta Mater 2001; 44(10):2463–9. [21] Asthana R, Mileiko ST, Sobczak N. Wettability and interface considerations in advanced heat-resistant Ni-base composites. Bull Polish Acad Sci (Technical Sciences) 2006;54(2):147–66. [22] Mileiko ST. Composites reinforced with single crystalline oxide fibres: experiments and modeling. J Mater Sci, in press. [23] Asthana R, Tewari SN, Draper SL. Strength degradation of sapphire fibers during pressure casting of a sapphire-reinforced Ni-base superalloy. Metall Mater Trans 1998;29A:1527–30. [24] Asthana R, Tewari SN. Interface response to solidification in sapphire-reinforced Ni-base composites. Adv Compos Mater 2000; 9(4):265–307. [25] Sutton WH, Feingold E. Role of interfacially active metals in the apparent adherence of nickel to sapphire. Materials science research, vol. 3. Plenum Press; 1966. p. 577–611. [26] Prokopenko VM, Mileiko ST. Evaluation of the fibre/matrix inter￾face strength by the pushing-out of fibres of non-symmetrical cross￾section. Compos Sci Technol 2001;61(11):1649–52. [27] Cain MG, Cain RL, Lewis MH, Gent J. In situ rare-earth hexaaluminate interphases. J Am Ceram Soc 1997;80(7):1873–6. [28] Tu W, Lange FF, Evans AG. Concept for a damage tolerant ceramic composite with ‘‘strong’’ interfaces. J Am Ceram Soc 1996;79:417–24. [29] Kanka B, Schneider H. Aluminosilicate fiber/mullite matrix compos￾ites with favorable high-temperature properties. J Eur Ceram Soc 2000;20:619–23. [30] Kolchin AA, Kiiko VM, Sarkissyan NS, Mileiko ST. Oxide/oxide composites with fibres produced by using internal crystallization method. Compos Sci Technol 2001;61(8):1079–82. [31] Kolchin AA, Korzhov VP, Maleev IV, Kiiko VM, Mileiko ST. Creep of a model sapphire/alumina composite. J Compos Mater, submitted for publication. [32] Mileiko ST, Kiiko VM, Kolchin AA, Korzhov VP, Prokopenko VM. Oxide–fibre/Ni-based matrix composites – II: mechanical behaviour. Compos Sci Technol 2002;62(2):181–93. S.T. Mileiko / Current Opinion in Solid State and Materials Science 9 (2005) 219–229 229
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有