正在加载图片...
Macromolecules Article (7) biobased epox (3)mly,N;Fache,M:Minard,R;Negrell,C:Callol,David.G u. 2015,6(35).62576291 unds:the state of the Q:Hu Zhang ration of a (40)o,D of pe ed b 19)Aouf,C Lecomte,J Villen 20283t P-Duh Li,P.;Sui,G;Yu,Yi Li,G;Yang Xi Ryu,S.Cur 36 has,H:Fache,M:Caillol,Boutevin,B. m人2013,98i a nove (43)W ed the 006.91(8.174 1754 rd,R Caillo,Allais,F.Ferulic ab wheat bra 7,9583 23K0 o,Y.S dem Wod m (4).701 14,99, 46) u.H.: u,Y.A ef in,B.:Caillol.S (26)Fac (01.526 M;Au X.:Hu.Y die ng W;Lu H.Th 2011,92(0.164 TG-FTIR and DP.MS. 49)】 High-Perfo y n() i Jabe 01 ia22016,49(0 337(60 (51)Xie,T A M SD o。227 52)Liu,H.:Xu,K:Cai,H.:Su,I:Liu,X:Fu,Z:Chen,M.Therma Schift-base .Po 009,306,1316-1323. 33)Fachd M;Bo (35L,Y.LF r0m20i4,16(4, el phosphorus 200142(8.3445-3454 36)Qian,X;So L:B their pe me reta 07()379 10(17) Liu, X. Q.; Zhang, J. W. High-performance biobased epoxy derived from rosin. Polym. Int. 2010, 59 (5), 607−609. (18) Liu, X. Q.; Huang, W.; Jiang, Y. H.; Zhu, J.; Zhang, C. Z. Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. eXPRESS Polym. Lett. 2012, 6 (4), 293−298. (19) Aouf, C.; Lecomte, J.; Villeneuve, P.; Dubreucq, E.; Fulcrand, H. Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers. Green Chem. 2012, 14 (8), 2328−2336. (20) Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym. J. 2013, 49 (6), 1185−1195. (21) Cao, L.; Liu, X.; Na, H.; Wu, Y.; Zheng, W.; Zhu, J. How a bio￾based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J. Mater. Chem. A 2013, 1 (16), 5081−5088. (22) Menard, R.; Caillol, S.; Allais, F. Ferulic acid-based renewable ́ esters and amides-containing epoxy thermosets from wheat bran and beetroot pulp: Chemo-enzymatic synthesis and thermomechanical properties characterization. Ind. Crops Prod. 2017, 95, 83−95. (23) Koike, T. Progress in Development of Epoxy Resin Systems Based on Wood Biomass in Japan. Polym. Eng. Sci. 2012, 52 (4), 701− 717. (24) Zhao, B.; Chen, G.; Liu, Y.; Hu, K.; Wu, R. Synthesis of lignin base epoxy resin and its characterization. J. Mater. Sci. Lett. 2001, 20 (9), 859−862. (25) Fache, M.; Viola, A.; Auvergne, R.; Boutevin, B.; Caillol, S. Biobased epoxy thermosets from vanillin-derived oligomers. Eur. Polym. J. 2015, 68 (0), 526−535. (26) Fache, M.; Auvergne, R.; Boutevin, B.; Caillol, S. New vanillin￾derived diepoxy monomers for the synthesis of biobased thermosets. Eur. Polym. J. 2015, 67, 527−538. (27) Chrysanthos, M.; Galy, J.; Pascault, J.-P. Influence of the Bio￾Based Epoxy Prepolymer Structure on Network Properties. Macromol. Mater. Eng. 2013, 298 (11), 1209−1219. (28) Łukaszczyk, J.; Janicki, B.; Kaczmarek, M. Synthesis and properties of isosorbide based epoxy resin. Eur. Polym. J. 2011, 47 (8), 1601−1606. (29) Tuck, C. O.; Perez, E.; Horva ́ th, I. T.; Sheldon, R. A.; Poliakoff, ́ M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337 (6095), 695−699. (30) Upton, B. M.; Kasko, A. M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chem. Rev. 2016, 116 (4), 2275−2306. (31) Hofmann, K.; Glasser, W. Engineering plastics from lignin, 23. Network formation of lignin-based epoxy resins. Macromol. Chem. Phys. 1994, 195 (1), 65−80. (32) Hofmann, K.; Glasser, W. G. Engineering Plastics from Lignin. 22. Cure of Lignin Based Epoxy Resins. J. Adhes. 1993, 40 (2−4), 229−241. (33) Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488−502. (34) Fache, M.; Darroman, E.; Besse, V.; Auvergne, R.; Caillol, S.; Boutevin, B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem. 2014, 16 (4), 1987−1998. (35) Liu, Y. L. Flame-retardant epoxy resins from novel phosphorus￾containing novolac. Polymer 2001, 42 (8), 3445−3454. (36) Qian, X.; Song, L.; Bihe, Y.; Yu, B.; Shi, Y.; Hu, Y.; Yuen, R. K. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater. Chem. Phys. 2014, 143 (3), 1243−1252. (37) The European Parliament and the European Council: Off. J. Eur. Union, 2003, Directive 2002/96/EC of 27. (38) Ma, S.; Liu, X.; Jiang, Y.; Fan, L.; Feng, J.; Zhu, J. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci. China: Chem. 2014, 57 (3), 379−388. (39) Illy, N.; Fache, M.; Menard, R.; Negrell, C.; Caillol, S.; David, G. ́ Phosphorylation of bio-based compounds: the state of the art. Polym. Chem. 2015, 6 (35), 6257−6291. (40) Rosu, D.; Cas ̧ caval, C.; Mustata ̧ , F.; Ciobanu, C. Cure kinetics of ̌ epoxy resins studied by non-isothermal DSC data. Thermochim. Acta 2002, 383 (1), 119−127. (41) Cai, H.; Li, P.; Sui, G.; Yu, Y.; Li, G.; Yang, X.; Ryu, S. Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC. Thermochim. Acta 2008, 473 (1−2), 101−105. (42) Wang, C. S.; Lin, C. H. Properties and curing kinetic of diglycidyl ether of bisphenol A cured with a phosphorus-containing diamine. J. Appl. Polym. Sci. 1999, 74 (7), 1635−1645. (43) Wang, Q.; Shi, W. Kinetics study of thermal decomposition of epoxy resins containing flame retardant components. Polym. Degrad. Stab. 2006, 91 (8), 1747−1754. (44) Qian, L.; Qiu, Y.; Sun, N.; Xu, M.; Xu, G.; Xin, F.; Chen, Y. Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame￾retardant effect on epoxy resin. Polym. Degrad. Stab. 2014, 107, 98− 105. (45) Wang, Y.; Zhao, J.; Yuan, Y.; Liu, S.; Feng, Z.; Zhao, Y. Synthesis of maleimido-substituted aromatic s-triazine and its application in flame-retarded epoxy resins. Polym. Degrad. Stab. 2014, 99, 27−34. (46) Wang, X.; Song, L.; Xing, W.; Lu, H.; Hu, Y. A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate. Mater. Chem. Phys. 2011, 125 (3), 536−541. (47) Xu, W.; Wirasaputra, A.; Liu, S.; Yuan, Y.; Zhao, J. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015, 122, 44−51. (48) Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO￾substitued organophosphorus oligomer by TG-FTIR and DP-MS. J. Anal. Appl. Pyrolysis 2011, 92 (1), 164−170. (49) Ma, S.; Webster, D. C. Naturally Occurring Acids as Cross￾Linkers To Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules 2015, 48 (19), 7127−7137. (50) Ma, S.; Webster, D. C.; Jabeen, F. Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol. Macromolecules 2016, 49 (10), 3780−3788. (51) Xie, T.; Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 2009, 50 (8), 1852−1856. (52) Liu, H.; Xu, K.; Cai, H.; Su, J.; Liu, X.; Fu, Z.; Chen, M. Thermal properties and flame retardancy of novel epoxy based on phosphorus￾modified Schiff-base. Polym. Adv. Technol. 2012, 23 (1), 114−121. (53) Chen, Z.-K.; Yang, G.; Yang, J.-P.; Fu, S.-Y.; Ye, L.; Huang, Y.-G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer 2009, 50 (5), 1316−1323. Macromolecules Article DOI: 10.1021/acs.macromol.7b00097 Macromolecules 2017, 50, 1892−1901 1901
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有