正在加载图片...
工程科学学报.第42卷.第1期:120-127.2020年1月 Chinese Journal of Engineering,Vol.42,No.1:120-127,January 2020 https://doi.org/10.13374/j.issn2095-9389.2019.07.29.002;http://cje.ustb.edu.cn 羟基磷灰石气凝胶复合相变材料的制备及其性能 刘盼盼),刘斯奇),高鸿毅)区,王静静”,高志猛,罗雨欣) 1)北京科技大学材料科学与工程学院.北京1000832)苏州阿德旺斯新材料有限公司.苏州215000 ☒通信作者.E-mail:hygao2009@163.com 摘要以相变材料为核心的潜热储存技术,对加快新能源开发和提高能源利用率起着关键性作用.以油酸钙为前驱体,通 过水热法合成了具有自支撑网络结构的羟基磷灰石(HAP)气凝胶,并采用浸渍法制备出白支撑羟基磷灰石复合相变材料.通 过扫描电镜、傅里叶红外光谱、X射线衍射、热重法、差示扫描量热法等手段对所制备复合相变材料的形貌、稳定性、热性 能等进行了表征及测试.实验结果表明,负载石蜡或十八醇的羟基磷灰石气凝胶复合相变材料均具有良好的热性能.质量分 数60%石蜡@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值分别为85.10和85.30Jg,结晶度为81.50%:质量分数 60%十八醇@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值为113.78和112.25Jg,结晶度为86.20%,且具有很好的 热稳定性和化学稳定性.此外,羟基磷灰石气凝胶载体材料阻燃性好,无腐蚀且安全环保,有效拓展了相变材料在智能保温 纺织物和建筑材料等领域的实际应用. 关键词相变材料:羟基磷灰石;石蜡;十八醇;潜热;阻燃性 分类号TB34 Preparation and properties of hydroxyapatite aerogel composite phase change materials LIU Pan-pan,LIU Si-gi,GAO Hong-yi,WANG Jing-jing,GAO Zhi-meng,LUO Yu-xin 1)School of Materials Science and Engineering.University of Science and Technology Beijing.Beijing 100083,China 2)Suzhou Advanced Materials Co.Ltd.,Suzhou 215000,China Corresponding author,E-mail:hygao2009@163.com ABSTRACT To address energy shortage and environmental pollution,scientists are working to develop methods for the production, conversion,and storage of new energy sources.The development of thermal energy storage(TES)is considered to be one of the most effective energy conservation and environmental protection strategies for utilizing various renewable energy sources.Energy storage technology can solve the contradiction between energy supply and demand in time and space and also improve energy efficiency. Currently,TES includes mainly sensible heat storage,latent heat storage,and thermochemical energy storage.The latent heat TES based on phase change materials(PCMs)is an efficient technology that is being actively pursued owing to high storage density in a small temperature region,which is essential for accelerating new energy development and improving energy efficiency.In this paper, hydroxyapatite aerogels with self-supporting network structure were prepared via a hydrothermal method using calcium oleate as a precursor.Self-supporting hydroxyapatite-based composite phase change materials were synthesized using the impregnation method. The morphology and thermal properties of the prepared composite phase change materials were characterized and tested by scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray diffraction,thermogravimetry,and differential scanning calorimetry.The experimental results show that the composite phase change materials of hydroxyapatite aerogels loaded with octadecanol or paraffin have good thermal properties.The measured values of melting enthalpy and solidified enthalpy of the60% paraffin@HAP composite phase change materials are 85.10 and 85.30 Jg,respectively,and its crystallinity is 81.50%.The measured 收稿日期:2019-07-29 基金项目:国家白然科学基金资助项目(51436001,51802016):中央高校基本科研业务费资助项目(FRF-BD-18-013A)羟基磷灰石气凝胶复合相变材料的制备及其性能 刘盼盼1),刘斯奇1),高鸿毅1) 苣,王静静1),高志猛2),罗雨欣1) 1) 北京科技大学材料科学与工程学院,北京 100083    2) 苏州阿德旺斯新材料有限公司,苏州 215000 苣通信作者,E-mail:hygao2009@163.com 摘    要    以相变材料为核心的潜热储存技术,对加快新能源开发和提高能源利用率起着关键性作用. 以油酸钙为前驱体,通 过水热法合成了具有自支撑网络结构的羟基磷灰石(HAP)气凝胶,并采用浸渍法制备出自支撑羟基磷灰石复合相变材料. 通 过扫描电镜、傅里叶红外光谱、X 射线衍射、热重法、差示扫描量热法等手段对所制备复合相变材料的形貌、稳定性、热性 能等进行了表征及测试. 实验结果表明,负载石蜡或十八醇的羟基磷灰石气凝胶复合相变材料均具有良好的热性能,质量分 数 60% 石蜡@HAP 气凝胶复合相变材料的熔融焓和凝固焓测量值分别为 85.10 和 85.30 J·g−1,结晶度为 81.50%;质量分数 60% 十八醇@HAP 气凝胶复合相变材料的熔融焓和凝固焓测量值为 113.78 和 112.25 J·g−1,结晶度为 86.20%,且具有很好的 热稳定性和化学稳定性. 此外,羟基磷灰石气凝胶载体材料阻燃性好,无腐蚀且安全环保,有效拓展了相变材料在智能保温 纺织物和建筑材料等领域的实际应用. 关键词    相变材料;羟基磷灰石;石蜡;十八醇;潜热;阻燃性 分类号    TB34 Preparation and properties of hydroxyapatite aerogel composite phase change materials LIU Pan-pan1) ,LIU Si-qi1) ,GAO Hong-yi1) 苣 ,WANG Jing-jing1) ,GAO Zhi-meng2) ,LUO Yu-xin1) 1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2) Suzhou Advanced Materials Co. Ltd., Suzhou 215000, China 苣 Corresponding author, E-mail: hygao2009@163.com ABSTRACT    To address energy shortage and environmental pollution, scientists are working to develop methods for the production, conversion, and storage of new energy sources. The development of thermal energy storage (TES) is considered to be one of the most effective  energy  conservation  and  environmental  protection  strategies  for  utilizing  various  renewable  energy  sources.  Energy  storage technology  can  solve  the  contradiction  between  energy  supply  and  demand  in  time  and  space  and  also  improve  energy  efficiency. Currently, TES includes mainly sensible heat storage, latent heat storage, and thermochemical energy storage. The latent heat TES based on phase change materials (PCMs) is an efficient technology that is being actively pursued owing to high storage density in a small temperature  region,  which  is  essential  for  accelerating  new  energy  development  and  improving  energy  efficiency.  In  this  paper, hydroxyapatite  aerogels  with  self-supporting  network  structure  were  prepared via a  hydrothermal  method  using  calcium  oleate  as  a precursor.  Self-supporting  hydroxyapatite-based  composite  phase  change  materials  were  synthesized  using  the  impregnation  method. The morphology and thermal properties of the prepared composite phase change materials were characterized and tested by scanning electron  microscopy,  Fourier  transform  infrared  spectroscopy,  X-ray  diffraction,  thermogravimetry,  and  differential  scanning calorimetry.  The  experimental  results  show  that  the  composite  phase  change  materials  of  hydroxyapatite  aerogels  loaded  with octadecanol  or  paraffin  have  good  thermal  properties.  The  measured  values  of  melting  enthalpy  and  solidified  enthalpy  of  the  60% paraffin@HAP composite phase change materials are 85.10 and 85.30 J·g−1, respectively, and its crystallinity is 81.50%. The measured 收稿日期: 2019−07−29 基金项目: 国家自然科学基金资助项目(51436001,51802016);中央高校基本科研业务费资助项目(FRF-BD-18-013A) 工程科学学报,第 42 卷,第 1 期:120−127,2020 年 1 月 Chinese Journal of Engineering, Vol. 42, No. 1: 120−127, January 2020 https://doi.org/10.13374/j.issn2095-9389.2019.07.29.002; http://cje.ustb.edu.cn
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有