正在加载图片...
SCIENCE ADVANCES RESEARCH ARTICLE houd Faces Dat B Hatar M H Ma a31,173-1811993 ion of en m32827-838201 ty and eopr face perceptio hia921830-1839e04 W.Young.,Mo between ty and on proc ty of tra orward neura ed Em n30,583-5972000 n fac span Evidenc 44.P V.A.F.La 013 45.LWe P.F.Schade.T. u.E ert,JJ.DiCe 47. he.c pace in prima 11,8619-36242015 Ha ns by /-r th-old infants.Perception 30,111 ML Irani.A.D.M lotti,K.C.O. tti Recognition of identity 50.KH 9n5a24 21.42021 or face reco 574662019 52.E.H.Telcer,J.Flann s.B.Golf,LG ty to ra W.F Y. 013 0m57.217-239 MVA 55.KA.D M VE ,T.E 5.Baek.M Song,5-B.Paik ng9611-6292018 56. J.Hamris.A.W.Young.T.J Anc ws.Dy 57. nal fac -KDEF.CD ROM 5a.wmYQP12 dina with deep Hare,D. 59.1K ional mode 168242249D00 ural networks for m sual perceptual learning nt 51. V.Will gical a model.fe.3105 (201). 2010 Zhou etal,Sci.Adv,eabj4383(202)23 March 2027Zhou et al., Sci. Adv. 8, eabj4383 (2022) 23 March 2022 SCIENCE ADVANCES | RESEARCH ARTICLE 10 of 11 4. A. W. Young, F. Newcombe, E. H. F. D. Haan, M. Small, D. C. Hay, Face perception after brain injury. Selective impairments affecting identity and expression. Brain 116, 941–959 (1993). 5. G. W. Humphreys, N. Donnelly, M. J. Riddoch, Expression is computed separately from facial identity, and it is computed separately for moving and static faces: Neuropsychological evidence. Neuropsychologia 31, 173–181 (1993). 6. B. C. Duchaine, H. Parker, K. Nakayama, Normal recognition of emotion in a prosopagnosic. Perception 32, 827–838 (2003). 7. J. V. Haxby, E. A. Hoffman, M. I. I. Gobbini, The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000). 8. J. S. Winston, R. N. A. Henson, M. R. Fine-Goulden, R. J. Dolan, fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92, 1830–1839 (2004). 9. T. J. Andrews, M. P. Ewbank, Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage 23, 905–913 (2004). 10. C. J. Fox, H. M. Hanif, G. Iaria, B. C. Duchaine, J. J. S. S. Barton, Perceptual and anatomic patterns ofselective deficits in facial identity and expression processing. Neuropsychologia 49, 3188–3200 (2011). 11. A. S. Redfern, C. P. Benton, Expression dependence in the perception of facial identity. Iperception 8, 2041669517710663 (2017). 12. T. Ganel, Y. Goshen-Gottstein, T. Ganel, Effects of familiarity on the perceptual integrality of the identity and expression of faces: The parallel-route hypothesis revisited. J. Exp. Psychol. Hum. Percept. Perform. 30, 583–597 (2004). 13. A. Yankouskaya, P. Rotshtein, G. W. Humphreys, Interactions between identity and emotional expression in face processing across the lifespan: Evidence from redundancy gains. J. Aging Res. 2014, 1–12 (2014). 14. A. M. V. Gerlicher, A. M. Van Loon, H. S. Scholte, V. A. F. Lamme, A. R. Van der Leij, Emotional facial expressions reduce neural adaptation to face identity. Soc. Cogn. Affect. Neurosci. 9, 610–614 (2014). 15. H. A. Baseler, R. J. Harris, A. W. Young, T. J. Andrews, Neural responses to expression and gaze in the posterior superior temporal sulcus interact with facial identity. Cereb. Cortex 24, 737–744 (2014). 16. D. L. K. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, J. J. DiCarlo, Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624 (2014). 17. P. Bashivan, K. Kar, J. J. DiCarlo, Neural population control via deep image synthesis. Science 364, eaav9436 (2019). 18. S. Grossman, G. Gaziv, E. M. Yeagle, M. Harel, P. Mégevand, D. M. Groppe, S. Khuvis, J. L. Herrero, M. Irani, A. D. Mehta, R. Malach, Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks. Nat. Commun. 10, 4934 (2019). 19. K. C. O’Nell, R. Saxe, S. Anzellotti, K. C. O. Nell, R. Saxe, S. Anzellotti, Recognition of identity and expressions as integrated processes. (PsyArXiv, 2019). 20. Y. I. Colón, C. D. Castillo, A. J. O’Toole, Facial expression is retained in deep networks trained for face identification. J. Vis. 21, 4 (2021). 21. S. Baek, M. Song, J. Jang, G. Kim, S.-B. Paik, Spontaneous generation of face recognition in untrained deep neural networks. bioRxiv:857466 (2019). 22. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W.H. Freeman, 1982). 23. M. R. W. Dawson, Mind, Body, World: Foundations of Cognitive Science (Athabasca Univ. Press, 2013). 24. O. M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in Proceedings of the British Machine Vision Conference (BMVA Press, 2015), pp. 41.1–41.12. 25. R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi, Convolutional neural networks: An overview and application in radiology. Insights Imaging 9, 611–629 (2018). 26. G. Kim, J. Jang, S. Baek, M. Song, S.-B. Paik, Visual number sense in untrained deep neural networks. Sci. Adv. 7, eabd6127 (2021). 27. K. Nasr, P. Viswanathan, A. Nieder, Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Sci. Adv. 5, eaav7903 (2019). 28. D. Lundqvist, A. Flykt, A. Öhman, The Karolinska directed emotional faces–KDEF, CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet (1998). 29. N. Tottenham, J. W. Tanaka, A. C. Leon, T. McCarry, M. Nurse, T. A. Hare, D. J. Marcus, A. Westerlund, B. J. Casey, C. Nelson, The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Res. 168, 242–249 (2009). 30. P. Ekman, An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992). 31. P. Ekman, D. Cordaro, What is meant by calling emotions basic. Emot. Rev. 3, 364–370 (2011). 32. G. W. Lindsay, K. D. Miller, How biological attention mechanisms improve task performance in a large-scale visual system model. eLife 7, e38105 (2018). 33. O. Langner, R. Dotsch, G. Bijlstra, D. H. J. J. Wigboldus, S. T. Hawk, A. van Knippenberg, Presentation and validation of the Radboud Faces Database. Cogn. Emot. 24, 1377–1388 (2010). 34. A. Mollahosseini, B. Hasani, M. H. Mahoor, AffectNet: A database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10, 18–31 (2017). 35. A. J. Calder, A. M. Burton, P. Miller, A. W. Young, S. Akamatsu, A principal component analysis of facial expressions. Vision Res. 41, 1179–1208 (2001). 36. N. L. Etcoff, J. J. Magee, Categorical perception of facial expressions. Cognition 44, 227–240 (1992). 37. C. J. Fox, S. Y. Moon, G. Iaria, J. J. S. S. Barton, S. Young, G. Iaria, J. J. S. S. Barton, S. Y. Moon, G. Iaria, J. J. S. S. Barton, The correlates ofsubjective perception of identity and expression in the face network: An fMRI adaptation study. Neuroimage 44, 569–580 (2009). 38. R. J. Harris, A. W. Young, T. J. Andrews, Morphing between expressions dissociates continuous from categorical representations of facial expression in the human brain. Proc. Natl. Acad. Sci. U.S.A. 109, 21164–21169 (2012). 39. A. J. Calder, A. W. Young, D. I. Perrett, N. L. Etcoff, D. Rowland, Categorical perception of morphed facial expressions. Vis. Cogn. 3, 81–118 (1996). 40. T. Fujimura, Y. T. Matsuda, K. Katahira, M. Okada, K. Okanoya, Categorical and dimensional perceptions in decoding emotional facial expressions. Cogn. Emot. 26, 587–601 (2012). 41. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014). 42. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010). 43. C. Zhou, W. Xu, Y. Liu, Z. Xue, R. Chen, K. Zhou, J. Liu, Numerosity representation in a deep convolutional neural network. J. Pac. Rim Psychol. 15, 1–11 (2021). 44. P. Viswanathan, A. Nieder, Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. Proc. Natl. Acad. Sci. U.S.A. 110, 11187–11192 (2013). 45. L. Wagener, M. Loconsole, H. M. Ditz, A. Nieder, Neurons in the endbrain of numerically naive crows spontaneously encode visual numerosity. Curr. Biol. 28, 1090–1094.e4 (2018). 46. M. S. Livingstone, J. L. Vincent, M. J. Arcaro, K. Srihasam, P. F. Schade, T. Savage, Development of the macaque face-patch system. Nat. Commun. 8, 14897 (2017). 47. P. Bao, L. She, M. Mcgill, D. Y. Tsao, A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020). 48. E. Kotsoni, M. De Haan, M. H. Johnson, M. De Haanô, M. H. Johnson, M. De Haan, M. H. Johnson, M. De Haanô, M. H. Johnson, M. De Haan, M. H. Johnson, Categorical perception of facial expressions by 7-month-old infants. Perception 30, 1115–1125 (2001). 49. J. M. Leppanen, J. Richmond, V. K. Vogel-farley, M. C. Moulson, C. A. Nelson, J. M. Leppänen, J. Richmond, V. K. Vogel-farley, M. C. Moulson, C. A. Nelson, Categorical representation of facial expressions in the infant brain. Infancy 14, 346–362 (2009). 50. K. Hoemann, R. Wu, V. LoBue, L. M. Oakes, F. Xu, L. F. Barrett, Developing an understanding of emotion categories: Lessons from objects. Trends Cogn. Sci. 24, 39–51 (2020). 51. V. Lee, J. L. Cheal, M. D. Rutherford, Categorical perception along the happy-angry and happy-sad continua in the first year of life. Infant Behav. Dev. 40, 95–102 (2015). 52. E. H. Telzer, J. Flannery, M. Shapiro, K. L. Humphreys, B. Goff, L. Gabard-Durman, D. D. Gee, N. Tottenham, Early experience shapes amygdala sensitivity to race: An international adoption design. J. Neurosci. 33, 13484–13488 (2013). 53. Y. Du, F. Zhang, Y. Wang, T. Bi, J. Qiu, Perceptual learning of facial expressions. Vision Res. 128, 19–29 (2016). 54. J. M. Beale, F. C. Keil, Categorical effects in the perception of faces. Cognition 57, 217–239 (1995). 55. K. A. Dalrymple, M. ViscontiDiOleggio Castello, J. T. Elison, M. I. Gobbini, Concurrent development of facial identity and expression discrimination. PLOS ONE 12, e0179458 (2017). 56. R. J. Harris, A. W. Young, T. J. Andrews, Dynamic stimuli demonstrate a categorical representation of facial expression in the amygdala. Neuropsychologia 56, 47–52 (2014). 57. B. P. Tripp, Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks, in 2017 International Joint Conference Neural Networks (IJCNN) (IEEE, 2017), pp. 3551–3560. 58. H. Wen, J. Shi, Y. Zhang, K. H. Lu, J. Cao, Z. Liu, Neural encoding and decoding with deep learning for dynamic natural vision. Cereb. Cortex 28, 4136–4160 (2018). 59. J. Kubilius, S. Bracci, H. P. Op de Beeck, Deep neural networks as a computational model for human shape sensitivity. PLOS Comput. Biol. 12, 759 (2016). 60. L. K. Wenliang, A. R. Seitz, Deep neural networks for modeling visual perceptual learning. J. Neurosci. 38, 6028–6044 (2018). 61. V. Willenbockel, J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, J. W. Tanaka, Controlling low-level image properties: The SHINE toolbox. Behav. Res. Methods 42, 671–684 (2010). Downloaded from https://www.science.org at Southern Medical University on April 22, 2023
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有