正在加载图片...
·604. 工程科学学报,第40卷,第5期 地腐蚀特征:90%含水率时,台地腐蚀破坏区域扩 for investigating the corrosion of X65 steel in emulsions with H,S/ 大,腐蚀加重. CO2.J Mater Eng Perform,2016,25(7):3065 (2)低含水率时(40%~50%),X65钢表面上 [9]Zafar M N,Rihan R,Al-Hadhrami L.Effect of H2S and CO2 in oil/water emulsions on the corrosion resistance of SA-543 steel.J 腐蚀产物较少,产物膜仅有一层但相对致密,对基体 Mater Eng Perform,2015,24(2):683 起到一定的保护作用:高含水率时(80%~90%), [10]Zhu S D,Fu A Q,Miao J,et al.Corrosion of N80 carbon steel 原油对钢基体表面屏障作用减弱,生成的多层产物 in oil field formation water containing CO in the absence and 膜较厚而疏松,与基体结合力差,失去保护作用 presence of acetic acid.Corros Sci,2011,53(10):3156 (3)在C0,/油/水腐蚀环境中原油能够削弱腐 [11]Qiu Z C,Xiong C M,Chang Z L,et al.Major corrosion factors in the CO,and H.S coexistent environment and the relative anti- 蚀介质对腐蚀产物膜的溶解,使腐蚀产物膜的微观 corrosion method:taking Tazhong I gas field,Tarim Basin,as an 特征发生变化,可以改变X65钢腐蚀产物晶粒的大 example.Pet Explor Dev,2012,39(2):256 小、堆垛方式、产物膜的厚度及结构,从而影响腐蚀 [12]Xu L N,Chen T H,Chang W,et al.Effect of temperature on 速率 CO2 corrosion production scales on 3%Cr pipeline steel.Uni (4)在原油的缓蚀作用下,X65钢腐蚀过程的 Sci Technol Beijing,2012,34(2):149 (许立宁,陈太辉,常炜,等.温度对3%Cr管线钢C02腐蚀 温度敏感点发生改变,出现在50℃左右,温度≤50 产物膜的影响.北京科技大学学报,2012,34(2):149) ℃时,腐蚀产物疏松,与钢表面结合力较弱,容易 [13]Nesic S.Key issues related to modeling of internal corrosion of oil 脱落,腐蚀速率增大:温度>50℃时,腐蚀产物沉 and gas pipelines-a review.Corros Sci,2007,49(12):4308 积速度加快,生成的产物膜厚而致密具有保护性, [14] Dong X H,Jiang Y,Fu C L,et al.Effect of temperature on COz 阻碍了腐蚀过程,腐蚀速率下降,增强了X65钢的 corrosion behavior of Crl3 stainless steel.Corros Prot,2012,33 (3):196 耐蚀性. (董晓焕,姜毅,付彩利,等.温度对C13不锈钢C02腐蚀 行为的影响.腐蚀与防护,2012,33(3):196) 参考文献 [15]Zhao G X,Lii X H,Han Y.Effect of flow rate on CO2 corrosion [1]Yaro A S,Abdul-Khalik K R,Khadom AA.Effect of COz corro- behavior of P110 steel.J Mater Eng,2008(8):5 sion behavior of mild steel in oilfield produced water.I Loss Prer (赵国仙,吕祥鸿,韩勇.流速对PI10钢腐蚀行为的影响. Process Ind,2015,38:24 材料工程,2008(8):5) [2]Xu D.Huang W,Ruschau G,et al.Laboratory investigation of [16]Cai J Y,Li C,Tang X P,et al.Experimental study of water wet- MIC threat due to hydrotest using untreated seawater and subse- ting in oil-water two phase flow-Horizontal flow of model oil.Chem quent exposure to pipeline fluids with and without SRB spiking. Eng Sei,2012,73:334 Eng Failure Anal,2013,28:149 [17]Linter B R,Burstein G T.Reactions of pipeline steels in carbon [3]El-Lateef H M A,Abbasov V M,Aliyeva L I,et al.Corrosion dioxide solution.Corros Sci,1999,41(1):117 protection of steel pipelines against CO,corrosion-a review. [18]Zhang Y C,Gao K W,Schmitt G.Water effect on steel under Chem J,2012,2(2):52 supereritical CO2 conditions//Corrosion 2011.Houston,2011: [4]Nesic S.Effects of multiphase flow on interal CO,corrosion of 1 mild steel pipelines.Energy Fuels,2012,26(7):4098 [19]Zhao G X.Li X H,Li H L,et al.Effect of temperature on CO2 [5]Zhang G A,Cheng Y F.Localized corrosion of carbon steel in a corrosion behavior of P110 steel.J Chin Soe Corros Prot,2005 COz-saturated oilfield formation water.Electrochim Acta,2011, 25(2):93 56(3):1676 (赵国仙,吕样鸿,李鹤林,等.温度对P110钢C0,腐蚀行 [6]Sun C,Sun J B,Wang Y,et al.Corrosion mechanism of OCTG 为的影响.中国腐蚀与防护学报,2005,25(2):93) carbon steel in supereritical CO2/oil/water system.Acta Metall [20]Cheng Y P,Li Z L,Zhao Y L,et al.Effect of main controlling Sinica,2014,50(7):811 factor on the corrosion behaviour of APl X65 pipeline steel in the (孙冲,孙建波,王勇,等.超临界C0,/油/水系统中油气管 CO,/oil/water environment.Anti-Corros Methods Mater,2017, 材钢的腐蚀机制.金属学报,2014,50(7):811) 64(4):371 [7]Zafar M N,Rihan R,Al-Hadhrami L.Evaluation of the corrosion [21]Lin G F,Bai Z Q,Zhao X W,et al.Effect of temperature on resistance of SA-543 and X65 steels in emulsions containing H,S scales of carbon dioxide corrosion products.Acta Petrol Sin, and CO2 using a novel emulsion flow loop.Corros Sci,2015,94: 2004,25(3):101 275 (林冠发,白真权,赵新伟,等.温度对二氧化碳腐蚀产物膜 [8]Rihan R,Zafar M N,Al-Hadhrami L.A novel emulsion flow loop 形貌特征的影响.石油学报,2004,25(3):101)工程科学学报,第 40 卷,第 5 期 地腐蚀特征;90% 含水率时,台地腐蚀破坏区域扩 大,腐蚀加重. (2) 低含水率时(40% ~ 50% ),X65 钢表面上 腐蚀产物较少,产物膜仅有一层但相对致密,对基体 起到一定的保护作用;高含水率时(80% ~ 90% ), 原油对钢基体表面屏障作用减弱,生成的多层产物 膜较厚而疏松,与基体结合力差,失去保护作用. (3) 在 CO2 / 油/ 水腐蚀环境中原油能够削弱腐 蚀介质对腐蚀产物膜的溶解,使腐蚀产物膜的微观 特征发生变化,可以改变 X65 钢腐蚀产物晶粒的大 小、堆垛方式、产物膜的厚度及结构,从而影响腐蚀 速率. (4)在原油的缓蚀作用下,X65 钢腐蚀过程的 温度敏感点发生改变,出现在 50 益 左右,温度臆50 益时,腐蚀产物疏松,与钢表面结合力较弱,容易 脱落,腐蚀速率增大;温度 > 50 益 时,腐蚀产物沉 积速度加快,生成的产物膜厚而致密具有保护性, 阻碍了腐蚀过程,腐蚀速率下降,增强了 X65 钢的 耐蚀性. 参 考 文 献 [1] Yaro A S, Abdul鄄Khalik K R, Khadom A A. Effect of CO2 corro鄄 sion behavior of mild steel in oilfield produced water. J Loss Prev Process Ind, 2015, 38: 24 [2] Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subse鄄 quent exposure to pipeline fluids with and without SRB spiking. Eng Failure Anal, 2013, 28: 149 [3] El鄄Lateef H M A, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion—a review. Chem J, 2012, 2(2): 52 [4] Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines. Energy Fuels, 2012, 26(7): 4098 [5] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2 鄄saturated oilfield formation water. Electrochim Acta, 2011, 56(3): 1676 [6] Sun C, Sun J B, Wang Y, et al. Corrosion mechanism of OCTG carbon steel in supercritical CO2 / oil / water system. Acta Metall Sinica, 2014, 50(7): 811 (孙冲, 孙建波, 王勇, 等. 超临界 CO2 / 油/ 水系统中油气管 材钢的腐蚀机制. 金属学报, 2014, 50(7): 811) [7] Zafar M N, Rihan R, Al鄄Hadhrami L. Evaluation of the corrosion resistance of SA鄄鄄543 and X65 steels in emulsions containing H2 S and CO2 using a novel emulsion flow loop. Corros Sci, 2015, 94: 275 [8] Rihan R, Zafar M N, Al鄄Hadhrami L. A novel emulsion flow loop for investigating the corrosion of X65 steel in emulsions with H2 S / CO2 . J Mater Eng Perform, 2016, 25(7): 3065 [9] Zafar M N, Rihan R, Al鄄Hadhrami L. Effect of H2 S and CO2 in oil / water emulsions on the corrosion resistance of SA鄄鄄543 steel. J Mater Eng Perform, 2015, 24(2): 683 [10] Zhu S D, Fu A Q, Miao J, et al. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid. Corros Sci, 2011, 53(10): 3156 [11] Qiu Z C, Xiong C M, Chang Z L, et al. Major corrosion factors in the CO2 and H2 S coexistent environment and the relative anti鄄 corrosion method: taking Tazhong I gas field, Tarim Basin, as an example. Pet Explor Dev, 2012, 39(2): 256 [12] Xu L N, Chen T H, Chang W,et al. Effect of temperature on CO2 corrosion production scales on 3% Cr pipeline steel. J Univ Sci Technol Beijing, 2012, 34(2): 149 (许立宁, 陈太辉, 常炜, 等. 温度对3% Cr 管线钢 CO2 腐蚀 产物膜的影响. 北京科技大学学报, 2012, 34(2): 149) [13] Nesic S. Key issues related to modeling of internal corrosion of oil and gas pipelines—a review. Corros Sci, 2007, 49(12): 4308 [14] Dong X H, Jiang Y, Fu C L,et al. Effect of temperature on CO2 corrosion behavior of Cr13 stainless steel. Corros Prot, 2012, 33 (3): 196 (董晓焕, 姜毅, 付彩利, 等. 温度对 Cr13 不锈钢 CO2 腐蚀 行为的影响. 腐蚀与防护, 2012, 33(3): 196) [15] Zhao G X, L俟 X H, Han Y. Effect of flow rate on CO2 corrosion behavior of P110 steel. J Mater Eng, 2008(8): 5 (赵国仙, 吕祥鸿, 韩勇. 流速对 P110 钢腐蚀行为的影响. 材料工程, 2008(8): 5) [16] Cai J Y, Li C, Tang X P, et al. Experimental study of water wet鄄 ting in oil鄄water two phase flow鄄Horizontal flow of model oil. Chem Eng Sci, 2012, 73: 334 [17] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solution. Corros Sci, 1999, 41(1): 117 [18] Zhang Y C, Gao K W, Schmitt G. Water effect on steel under supercritical CO2 conditions / / Corrosion 2011. Houston, 2011: 1 [19] Zhao G X, L俟 X H, Li H L, et al. Effect of temperature on CO2 corrosion behavior of P110 steel. J Chin Soc Corros Prot, 2005, 25(2): 93 (赵国仙, 吕祥鸿, 李鹤林, 等. 温度对 P110 钢 CO2 腐蚀行 为的影响. 中国腐蚀与防护学报, 2005, 25(2): 93) [20] Cheng Y P, Li Z L, Zhao Y L, et al. Effect of main controlling factor on the corrosion behaviour of API X65 pipeline steel in the CO2 / oil / water environment. Anti鄄Corros Methods Mater, 2017, 64(4): 371 [21] Lin G F, Bai Z Q, Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products. Acta Petrol Sin, 2004, 25(3): 101 (林冠发, 白真权, 赵新伟, 等. 温度对二氧化碳腐蚀产物膜 形貌特征的影响. 石油学报, 2004, 25(3): 101) ·604·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有