正在加载图片...
14 2 Linear Elastic Stress-Strain Relations function y OrthotropicStiffness(E1,E2,E3,NU12,NU23,NU13,G12,G23,G13) %OrthotropicStiffness This function returns the stiffness matrix for orthotropic materials.There are nine % arguments representing the nine independent % material constants.The size of the stiffness matrix is 6 x 6. x=[1/E1-NU12/E1-NU13/E1000;-o12/E11/E2-NU23/E2000; -U13/E1-NU23/E21/E3000;0001/G2300;00001/G130; 000001/G12]; y inv(x) function y TransverselyIsotropicCompliance(E1,E2,NU12,NU23,G12) %TransverselyIsotropicCompliance This function returns the % compliance matrix for % transversely isotropic % materials.There are five % arguments representing the % five independent material constants.The size of the 名 compliance matrix is 6 x 6. y=[1/E1-NU12/E1-NU12/E1000;-U12/E11/E2-NU23/E2000; -NU12/E1-NU23/E21/E2000;0002*(1+NU23)/E200; 00001/G120;000001/G12]; function y TransverselyIsotropicStiffness(E1,E2,NU12,NU23,G12) ransverselyIsotropicStiffness This function returns the % stiffness matrix for % transversely isotropic % materials.There are five % arguments representing the % five independent material constants.The size of the % stiffness matrix is 6 x 6. x=[1/E1-NU12/E1-NU12/E1000;-NU12/E11/E2-NU23/E2000: -N012/E1-NU23/E21/E2000;0002*(1+NU23)/E200; 00001/G120;000001/G12]; y inv(x); function y IsotropicCompliance(E,NU) %IsotropicCompliance This function returns the compliance matrix for isotropic 名 materials.There are two % arguments representing the two independent material % constants.The size of the compliance matrix is 6 x 6. y=[1/E-NW/E-W/E000;-NU/E1/E-NU/E000; -NU/E-NU/E1/E000;0002*(1+NU)/E00; 00002*(1+NU)/E0;000002*(1+NU)/E];14 2 Linear Elastic Stress-Strain Relations function y = OrthotropicStiffness(E1,E2,E3,NU12,NU23,NU13,G12,G23,G13) %OrthotropicStiffness This function returns the stiffness matrix % for orthotropic materials. There are nine % arguments representing the nine independent % material constants. The size of the stiffness % matrix is 6 x 6. x = [1/E1 -NU12/E1 -NU13/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 000; -NU13/E1 -NU23/E2 1/E3 000;000 1/G2300;0000 1/G13 0 ; 00000 1/G12]; y = inv(x); function y = TransverselyIsotropicCompliance(E1,E2,NU12,NU23,G12) %TransverselyIsotropicCompliance This function returns the % compliance matrix for % transversely isotropic % materials. There are five % arguments representing the % five independent material % constants. The size of the % compliance matrix is 6 x 6. y = [1/E1 -NU12/E1 -NU12/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 000; -NU12/E1 -NU23/E2 1/E2 000;000 2*(1+NU23)/E2 0 0 ; 0000 1/G12 0 ; 0 0 0 0 0 1/G12]; function y = TransverselyIsotropicStiffness(E1,E2,NU12,NU23,G12) %TransverselyIsotropicStiffness This function returns the % stiffness matrix for % transversely isotropic % materials. There are five % arguments representing the % five independent material % constants. The size of the % stiffness matrix is 6 x 6. x = [1/E1 -NU12/E1 -NU12/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 000; -NU12/E1 -NU23/E2 1/E2 0 0 0 ; 0 0 0 2*(1+NU23)/E2 0 0 ; 0000 1/G12 0 ; 0 0 0 0 0 1/G12]; y = inv(x); function y = IsotropicCompliance(E,NU) %IsotropicCompliance This function returns the % compliance matrix for isotropic % materials. There are two % arguments representing the % two independent material % constants. The size of the % compliance matrix is 6 x 6. y = [1/E -NU/E -NU/E 0 0 0 ; -NU/E 1/E -NU/E000; -NU/E -NU/E 1/E 0 0 0;000 2*(1+NU)/E00; 0000 2*(1+NU)/E 0;00000 2*(1+NU)/E];
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有