正在加载图片...
·836· 智能系统学报 第17卷 2008,130(3):(034504)1-7 systems,man,and cybernetics:systems,2022,52(4) [52]MAR R,GOYAL A,NGUYEN V,et al.Combined in- 2514-2530. put shaping and feedback control for double-pendulum [62]TUAN L A,LEE S G.Sliding mode controls of double- systems[J].Mechanical systems and signal processing pendulum crane systems[J].Journal of mechanical sci- 2017.85:267-277 ence and technology,2013,27(6):1863-1873. [53]ZHANG Menghua,MA Xin,CHAI Hui,et al.A novel [63]董云云,王中华,冯志全,等.吊车-双摆系统的增量式 online motion planning method for double-pendulum 滑模控制[C]/第二十七届中国控制会议论文集.昆 overhead cranes[J].Nonlinear dynamics,2016,85(2): 明:[出版者不详1,2008:368-371 1079-1090. DONG Yunyun,WANG Zhonghua,FENG Zhiquan,et [54]LIU Cangcang,SUN Bo,LI Fan.Acceleration planning al.Incremental sliding mode control for double-pendu- based anti-swing and position control for double-pendu- lum-type overhead crane system[C]//2008 27th Chinese lum cranes[C]//2017 29th Chinese Control and Decision Control Conference,Kunming:[s,n.],2008:368-371. Conference.Chongqing:IEEE,2017:5671-5675. [64]ZHANG Menghua,ZHANG Yongfeng,CHENG Xin- [55]SUN Ning,FANG Yongchun,CHEN He,et al.Amp- gong.An enhanced coupling PD with sliding mode con- litude-saturated nonlinear output feedback antiswing trol method for underactuated double-pendulum over- control for underactuated cranes with double-pendulum head crane systems[J].International journal of control, cargo dynamics[J].IEEE transactions on industrial elec- automation and systems,2019,17(6):1579-1588 tronics,.2017,643):2135-2146. [65]OUYANG Huimin,HU Jinxin,ZHANG Guangming,et [56]ZHANG Menghua,ZHANG Yongfeng,JI Bing,et al. al.Sliding-mode-based trajectory tracking and load sway Modeling and energy-based sway reduction control for suppression control for double-pendulum overhead tower crane systems with double-pendulum and spheric- cranes[J].IEEE access,2019,7:4371-4379. al-pendulum effects[J.Measurement and control-lon- [66]QIAN Dianwei,TONG Shiwen,LEE S.Fuzzy-Logic- don-institute of measurement and control,2019,53(1- based control of payloads subjected to double-pendulum 2141-150 motion in overhead cranes[J].Automation in construc- [57]SUN Ning,WU Yiming,LIANG Xiao,et al.Nonlinear tion2016,65:133-143 stable transportation control for double-pendulum ship- [67]CHEN Qingrong,CHENG Wenming,GAO Lingchong, board cranes with ship-motion-induced disturbances[J]. et al.A pure neural network controller for double-pendu- IEEE transactions on industrial electronics,2019, lum crane anti-sway control:based on Lyapunov stabil- 66(12):9467-9479. ity theory[J].Asian journal of control,2021,23(1): [58]SUN Ning,WU Yiming,FANG Yongchun,et al.Non- 387-398. linear antiswing control for crane systems with double- [68 ]QIANG Haiyan,SUN Yougang,LYU Jinchao,et al. pendulum swing effects and uncertain parameters: Anti-sway and positioning adaptive control of a double- design and experiments[J].IEEE transactions on auto- pendulum effect crane system with neural network com- mation science and engineering,2018,15(3): pensation[J].Frontiers in robotics and Al,2021,8: 1413-1422. 639734. [59]OUYANG Huimin,XU Xiang,GANBAT T,et al.Non- [69]ABDEL-RAZAK M H.ATA AA.MOHAMED K T.et linear-adaptive-based swing reduction control for rotary al.Proportional-integral-derivative controller with inlet cranes with double-pendulum effect considering uncer- derivative filter fine-tuning of a double-pendulum gantry tain parameters and external disturbances[J.Automa- crane system by a multi-objective genetic algorithm[. tion in construction,2021,126:103668. Engineering optimization,2020,52(3):527-548. [60]ZHANG Menghua,MA Xin,RONG Xuewen,et al.Ad- [70]JAAFAR H I,MOHAMED Z,MOHD SUBHA N A,et aptive tracking control for double-pendulum overhead al.Efficient control of a nonlinear double-pendulum cranes subject to tracking error limitation,parametric un- overhead crane with sensorless payload motion using an certainties and external disturbances[J].Mechanical sys- improved PSO-tuned PID controller[J].Journal of vibra- tems and signal processing,2016,76/77:15-32. tion and control,2019,25(4):907-921 [61]ZHANG Menghua,JING Xingjian.Adaptive neural net- [71]MASOUD Z N,ALHAZZA K A,MAJEED M A,et al. work tracking control for double-pendulum tower crane A hybrid command-shaping control system for highly systems with nonideal inputs[J].IEEE transactions on accelerated double-pendulum gantry cranes[Cl//Proceed-2008, 130(3): (034504) 1−7. MAR R, GOYAL A, NGUYEN V, et al. Combined in￾put shaping and feedback control for double-pendulum systems[J]. Mechanical systems and signal processing, 2017, 85: 267–277. [52] ZHANG Menghua, MA Xin, CHAI Hui, et al. A novel online motion planning method for double-pendulum overhead cranes[J]. Nonlinear dynamics, 2016, 85(2): 1079–1090. [53] LIU Cangcang, SUN Bo, LI Fan. Acceleration planning based anti-swing and position control for double-pendu￾lum cranes[C]//2017 29th Chinese Control and Decision Conference. Chongqing: IEEE, 2017: 5671−5675. [54] SUN Ning, FANG Yongchun, CHEN He, et al. Amp￾litude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics[J]. IEEE transactions on industrial elec￾tronics, 2017, 64(3): 2135–2146. [55] ZHANG Menghua, ZHANG Yongfeng, JI Bing, et al. Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spheric￾al-pendulum effects[J]. Measurement and control-lon￾don- institute of measurement and control, 2019, 53(1- 2): 141–150. [56] SUN Ning, WU Yiming, LIANG Xiao, et al. Nonlinear stable transportation control for double-pendulum ship￾board cranes with ship-motion-induced disturbances[J]. IEEE transactions on industrial electronics, 2019, 66(12): 9467–9479. [57] SUN Ning, WU Yiming, FANG Yongchun, et al. Non￾linear antiswing control for crane systems with double￾pendulum swing effects and uncertain parameters: design and experiments[J]. IEEE transactions on auto￾mation science and engineering, 2018, 15(3): 1413–1422. [58] OUYANG Huimin, XU Xiang, GANBAT T, et al. Non￾linear-adaptive-based swing reduction control for rotary cranes with double-pendulum effect considering uncer￾tain parameters and external disturbances[J]. Automa￾tion in construction, 2021, 126: 103668. [59] ZHANG Menghua, MA Xin, RONG Xuewen, et al. Ad￾aptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric un￾certainties and external disturbances[J]. Mechanical sys￾tems and signal processing, 2016, 76/77: 15–32. [60] ZHANG Menghua, JING Xingjian. Adaptive neural net￾work tracking control for double-pendulum tower crane systems with nonideal inputs[J]. IEEE transactions on [61] systems, man, and cybernetics:systems, 2022, 52(4): 2514–2530. TUAN L A, LEE S G. Sliding mode controls of double￾pendulum crane systems[J]. Journal of mechanical sci￾ence and technology, 2013, 27(6): 1863–1873. [62] 董云云, 王中华, 冯志全, 等. 吊车-双摆系统的增量式 滑模控制 [C]//第二十七届中国控制会议论文集. 昆 明:[ 出版者不详 ], 2008: 368−371 DONG Yunyun, WANG Zhonghua, FENG Zhiquan, et al. Incremental sliding mode control for double-pendu￾lum-type overhead crane system[C]//2008 27th Chinese Control Conference, Kunming:[s, n.], 2008: 368−371. [63] ZHANG Menghua, ZHANG Yongfeng, CHENG Xin￾gong. An enhanced coupling PD with sliding mode con￾trol method for underactuated double-pendulum over￾head crane systems[J]. International journal of control, automation and systems, 2019, 17(6): 1579–1588. [64] OUYANG Huimin, HU Jinxin, ZHANG Guangming, et al. Sliding-mode-based trajectory tracking and load sway suppression control for double-pendulum overhead cranes[J]. IEEE access, 2019, 7: 4371–4379. [65] QIAN Dianwei, TONG Shiwen, LEE S. Fuzzy-Logic￾based control of payloads subjected to double-pendulum motion in overhead cranes[J]. Automation in construc￾tion, 2016, 65: 133–143. [66] CHEN Qingrong, CHENG Wenming, GAO Lingchong, et al. A pure neural network controller for double-pendu￾lum crane anti-sway control: based on Lyapunov stabil￾ity theory[J]. Asian journal of control, 2021, 23(1): 387–398. [67] QIANG Haiyan, SUN Yougang, LYU Jinchao, et al. Anti-sway and positioning adaptive control of a double￾pendulum effect crane system with neural network com￾pensation[J]. Frontiers in robotics and AI, 2021, 8: 639734. [68] ABDEL-RAZAK M H, ATA A A, MOHAMED K T, et al. Proportional-integral-derivative controller with inlet derivative filter fine-tuning of a double-pendulum gantry crane system by a multi-objective genetic algorithm[J]. Engineering optimization, 2020, 52(3): 527–548. [69] JAAFAR H I, MOHAMED Z, MOHD SUBHA N A, et al. Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller[J]. Journal of vibra￾tion and control, 2019, 25(4): 907–921. [70] MASOUD Z N, ALHAZZA K A, MAJEED M A, et al. A hybrid command-shaping control system for highly accelerated double-pendulum gantry cranes[C]//Proceed- [71] ·836· 智 能 系 统 学 报 第 17 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有