正在加载图片...
马志超等:金属镁中去孪晶过程与自间隙原子交互作用的分子动力学模拟 551· [5]Wang Y N,Huang J C.The role of twinning and untwinning in [17]Samolyuk G D,Barashev A V,Golubov S I,et al.Analysis of the yielding behavior in hot-extruded Mg-Al-Zn alloy.Acta Mater, anisotropy of point defect diffusion in hep Zr.Acta Mater,2014, 2007.55(3):897 78:173 [6]Yin S M,Yang F,Yang X M,et al.The role of twinning- [18]Serra A,Bacon D J,Osetsky Y N.Strengthening and detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn microstructure modification associated with moving twin alloy.Mater Sci Eng 4,2008,494(1-2):397 boundaries in hcp metals.Philos Mag Lett,2007,87(7):451 [7J Zhang Y,Liu T M,Xu S.et al.Detwinning behavior of an [19]Deng Y F,Wang Y X,He Y,et al.Atomic simulation of defect extruded AZ31 magnesium alloy during uniaxial compression behavior in metal zirconium.J Shengyang Normal Univ Nat Sci Trans Mater Heat Treat,2013,34(8):26 Ed,2018,36(4):295 (张愔,刘天模,徐舜,等.挤压态AZ31镁合金单向压缩过程中的 (邓玉福,王钰鑫,何燕,等.原子模拟金属锆中点缺陷行为.沈 退孪生行为.材料热处理学报,2013,34(8):26) 阳师范大学学报(自然科学版),2018.36(4):295) [8]Sarker D,Chen D L.Detwinning and strain hardening of an [20]Hatami F,Feghhi S A H,Arjhangmehr A,et al.Interaction of extruded magnesium alloy during compression.Scripta Mater. primary cascades with different atomic grain boundaries in a-Zr 2012.67(2):165 An atomic scale study.JNuc/Mater,2016,480:362 [9]Morrow B M,McCabe R J,Cerreta E K,et al.In-situ TEM [21]Pasianot R C.Self-interstitials structure in the hep metals:A observation of twinning and detwinning during cyclic loading in further perspective from first-principles calculations.Nucl Mater, Mg.Metall Mater Trans A,2014,45(1):36 2016,481:147 [10]Sun Q,Xia T,Tan L,et al.Influence of (1012)twin [22]Monti A M,Sarce A,Grande N S D,et al.Point defects and sink characteristics on detwinning in Mg-3Al-1Zn alloy.Mater Sci strength in h.c.p.metals.Philos Mag A,1991,63(5):925 EngA,2018,735:243 [23]de Diego N,Bacon D J.A computer simulation study of [11]Lou C,Zhang X Y,Wang R H,et al.Effects of untwinning and interstitial-twin boundary interactions in h.c.p.metals.Modell (1012)twin lamellar structure on the mechanical properties of Mg Simul Mater Sci Eng,1995,3(6):797 alloy.Acta Metall Sin,2013,49(3):291 [24]Liu X Y,Ohotnicky PP,Adams J B,et al.Anisotropic surface (娄超,张喜燕,汪润红,等.退李生行为以及(102)孪品片层结 构对镁合金力学性能的影响.金属学报,2013,49(3):291) segregation in Al-Mg alloys.Surf Sci,1997,373(2-3):357 [12]Mendelev M I,King A H.The interactions of self-interstitials with [25]Plimpton S.Fast parallel algorithms for short-range molecular twin boundaries.Philos Mag,2013,93(10-12):1268 dynamics.Comput Phys,1995,117(1):1 [13]Yu WS.Shen S P.Energetics of point defect interacting with [26]Li J.AtomEye:an efficient atomistic configuration viewer.Modell grain boundaries undergone plastic deformations.Int/Plast,2016. Simul Mater Sci Eng,2003,11(2):173 85:93 [27]Tang X Z,Zu Q,Guo Y F.The diffusive character of extension [14]Li X T.Tang X Z,Guo Y F.Minimum energy path of a solute twin boundary migration in magnesium.Mater,2018,2:208 atom diffusing to an edge dislocation core in Al-Mg alloys based [28]Luque A,Ghazisaeidi M,Curtin WA.A new mechanism for twin on empirical atomic potential.ChinJ Eng,2019,41(7):898 growth in Mg alloys.Acta Mater,2014,81:442 (李晓彤,汤笑之,郭雅芳.经验原子势下铝镁合金中溶质原子 [29]Gleiter H.The mechanism of grain boundary migration.Acta 向位错芯迁移的最低能量路径.工程科学学报,2019,41(7): Metall,1969,17(5:565 898) [30]Gong M Y,Hirth J P.Liu Y,et al.Interface structures and [15]Hood G M.Point defect diffusion in a-Zr.J Nuc/Mater,1988, twinning mechanisms of(1012)twins in hexagonal metals.Mater 159:149 Res Lett,2017,5(7):449 [16]PengQ.Ji W.Huang HC.et al.Stability of self-interstitial atoms [31]Bacon D J.A review of computer models of point defects in hcp in hep-Zr.J Nucl Mater,2012,429(1-3):233 metals.JNucl Mater,1988,159:176Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg−Al−Zn alloy. Acta Mater, 2007, 55(3): 897 [5] Yin S M, Yang F, Yang X M, et al. The role of twinning – detwinning on fatigue fracture morphology of Mg−3%Al−1%Zn alloy. Mater Sci Eng A, 2008, 494(1-2): 397 [6] Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression. Trans Mater Heat Treat, 2013, 34(8): 26 (张愔, 刘天模, 徐舜, 等. 挤压态AZ31镁合金单向压缩过程中的 退孪生行为. 材料热处理学报, 2013, 34(8):26) [7] Sarker D, Chen D L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scripta Mater, 2012, 67(2): 165 [8] Morrow B M, McCabe R J, Cerreta E K, et al. In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A, 2014, 45(1): 36 [9] Sun Q, Xia T, Tan L, et al. Influence of { 1012¯ } twin characteristics on detwinning in Mg−3Al−1Zn alloy. Mater Sci Eng A, 2018, 735: 243 [10] 1012¯ 1012¯ Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and { } twin lamellar structure on the mechanical properties of Mg alloy. Acta Metall Sin, 2013, 49(3): 291 (娄超, 张喜燕, 汪润红, 等. 退孪生行为以及{ }孪晶片层结 构对镁合金力学性能的影响. 金属学报, 2013, 49(3):291) [11] Mendelev M I, King A H. The interactions of self-interstitials with twin boundaries. Philos Mag, 2013, 93(10-12): 1268 [12] Yu W S, Shen S P. Energetics of point defect interacting with grain boundaries undergone plastic deformations. Int J Plast, 2016, 85: 93 [13] Li X T, Tang X Z, Guo Y F. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential. Chin J Eng, 2019, 41(7): 898 (李晓彤, 汤笑之, 郭雅芳. 经验原子势下铝镁合金中溶质原子 向位错芯迁移的最低能量路径. 工程科学学报, 2019, 41(7): 898) [14] Hood G M. Point defect diffusion in α-Zr. J Nucl Mater, 1988, 159: 149 [15] Peng Q, Ji W, Huang H C, et al. Stability of self-interstitial atoms in hcp-Zr. J Nucl Mater, 2012, 429(1-3): 233 [16] Samolyuk G D, Barashev A V, Golubov S I, et al. Analysis of the anisotropy of point defect diffusion in hcp Zr. Acta Mater, 2014, 78: 173 [17] Serra A, Bacon D J, Osetsky Y N. Strengthening and microstructure modification associated with moving twin boundaries in hcp metals. Philos Mag Lett, 2007, 87(7): 451 [18] Deng Y F, Wang Y X, He Y, et al. Atomic simulation of defect behavior in metal zirconium. J Shengyang Normal Univ Nat Sci Ed, 2018, 36(4): 295 (邓玉福, 王钰鑫, 何燕, 等. 原子模拟金属锆中点缺陷行为. 沈 阳师范大学学报(自然科学版), 2018, 36(4):295) [19] Hatami F, Feghhi S A H, Arjhangmehr A, et al. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study. J Nucl Mater, 2016, 480: 362 [20] Pasianot R C. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations. J Nucl Mater, 2016, 481: 147 [21] Monti A M, Sarce A, Grande N S D, et al. Point defects and sink strength in h. c. p. metals. Philos Mag A, 1991, 63(5): 925 [22] de Diego N, Bacon D J. A computer simulation study of interstitial-twin boundary interactions in h. c. p. metals. Modell Simul Mater Sci Eng, 1995, 3(6): 797 [23] Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 [24] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 [25] Li J. AtomEye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng, 2003, 11(2): 173 [26] Tang X Z, Zu Q, Guo Y F. The diffusive character of extension twin boundary migration in magnesium. Mater, 2018, 2: 208 [27] Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys. Acta Mater, 2014, 81: 442 [28] Gleiter H. The mechanism of grain boundary migration. Acta Metall, 1969, 17(5): 565 [29] 1012¯ Gong M Y, Hirth J P, Liu Y, et al. Interface structures and twinning mechanisms of { } twins in hexagonal metals. Mater Res Lett, 2017, 5(7): 449 [30] Bacon D J. A review of computer models of point defects in hcp metals. J Nucl Mater, 1988, 159: 176 [31] 马志超等: 金属镁中去孪晶过程与自间隙原子交互作用的分子动力学模拟 · 551 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有