正在加载图片...
LETTERS 6. Green, M. Fielder, E, Scrosati, B. Wachtler. M Moreno, L.S. Structured silicon anodes for lithium 22. Wang. Y, Schmidt, V, Senz, S& Gosele, U Epitaxial growth of silicon nanowires using an aluminum 出如是OmM请购dmm23HmU吧是Mm图自四a 8. Graetz, J, Ahn, CC, Yazami, R.& Fultz, B. Highly reversible lithium storage in nanostructured 24. Netz, A, Huggins, R. A. Weppner, w. 26.Obrovac, M. N.& Krause, L ]. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc 11. Nam, K.T. et al vergy storag ynthesis and assembly of nanowires for lithium ion battery 27. Hatchard, T D.& Dahn, 1. R In studly of the reaction of lithium wit mM上即是减C是m 12. Shaju, K M, liao, F, Debart, A& Bruce, P G. Mesoporous and 28.Lee, Y M, Lee, l. Y, Shim of molecular-scale silicon nanowires. Nano Left.4 14. Armstrong, G, Armstrong, A R Bruce, P G, Reale, P. Scrosati, B. IO (B)nanowires as an mproved anode material for lithium-ion batteries containing LiFePO, or LiNi,,Mn, .O, cathodes Acknowledgements 15. Li, N, Patrissi, C L Che, G.& Martin, C. R Rat ties of nanostructured LiMn O4 electrodes We thank technical help. YC ackno arup Fund and Glob odel for capacity loss during cycling of alloys in Correspondence and requests for material ed to yC &. jona6,57-63(2000) 18. Morales, A M. Lieber. C M. A laser ablation method for the synthesis of crystalline semiconductor Supplementary infor accompaniesthispaperonwww.nature.com/naturenanotechnology. anowires Science 279, 208-211(1998) 19.Huang.M.H.et al. Catalytic growth of zinc oxide nanowires by vapor transport. Ad. Mater. 13, Author contributions analysis. CKC,.H and YC wrote the paper. 21. Pan, Z. w Dai, 2 R Wang Z L Nanobelts of semiconducting oides Science 291 ss available naturenanotechnologyivol3JaNuaRy2008www.nature.com/r @2008 Nature Publishing Group© 2008 Nature Publishing Group 6. Green, M., Fielder, E., Scrosati, B., Wachtler, M. & Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75–A79 (2003). 7. Ryu, J. H., Kim, J. W., Sung, Y.-E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306 –A309 (2004). 8. Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194 –A197 (2003). 9. Gao, B., Sinha, S., Fleming, L. & Zhou, O. Alloy formation in nanostructured silicon. Adv. Mater. 13, 816 –819 (2001). 10. Che, G., Lakshmi, B. B., Fisher, E. R. & Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346 –349 (1998). 11. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 –888 (2006). 12. Shaju, K. M., Jiao, F., Debart, A. & Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9, 1837–1842 (2007). 13. Park, M.-S. et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edn 46, 750–753 (2007). 14. Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. & Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597 –2600 (2006). 15. Li, N., Patrissi, C. J., Che, G. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000). 16. Yang, J., Winter, M. & Besenhard, J. O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ionics 90, 281–287 (1996). 17. Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 –63 (2000). 18. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 –211 (1998). 19. Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001). 20. Dick, K. A. et al. A new understanding of Au-assisted growth of III-V semiconductor nanowires. Adv. Funct. Mater. 15, 1603–1610 (2005). 21. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001). 22. Wang, Y., Schmidt, V., Senz, S. & Gosele, U. Epitaxial growth of silicon nanowires using an aluminum catalyst. Nature Nanotech. 1, 186–189 (2006). 23. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 –71 (2006). 24. Netz, A., Huggins, R. A. & Weppner, W. The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 119 –121, 95–100 (2003). 25. Li, J. & Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 –A161 (2007). 26. Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 –A108 (2007). 27. Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 –A842 (2004). 28. Lee, Y. M., Lee, J. Y., Shim, H.-T., Lee, J. K. & Park, J.-K. SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515 –A519 (2007). 29. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433 –436 (2004). Acknowledgements We thank Dr Marshall for help with TEM interpretation and Professors Brongersma and Clemens for technical help. Y.C. acknowledges support from the Stanford New Faculty Startup Fund and Global Climate and Energy Projects. C.K.C. acknowledges support from a National Science Foundation Graduate Fellowship and Stanford Graduate Fellowship. Correspondence and requests for materials should be addressed to Y.C. Supplementary information accompanies this paper on www.nature.com/naturenanotechnology. Author contributions C.K.C. conceived and carried out the experiment and data analysis. H.P., G.L., K.M. and X.F.Z. assisted in experimental work. R.A.H. carried out data analysis. Y.C. conceived the experiment and carried out data analysis. C.K.C., R.A.H. and Y.C. wrote the paper. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/ LETTERS nature nanotechnology |VOL 3 | JANUARY 2008 |www.nature.com/naturenanotechnology 35
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有