正在加载图片...
(a) Positive clippi (b) Negative clipping (c)Positive and negative clipping FIGURE 5.9 Waveforms and transfer characteristics of limiting circuits. Source: T.E. Bogart, Jr, Electronic Devices and Circuits, 3rd ed, Columbus, Ohio: Macmillan/Merrill, 1993, p 676. With permission. the gain of the device. This is the region of linear operation. In these examples, the devices are assumed to have unity gain, so the slope of each line in the linear region is 1. Figure 5.10 illustrates a somewhat different kind of limiting action. Instead of the positive or negative peaks being clipped, the output follows the input when the signal is above or below a certain level. The transfer characteristics show that linear operation occurs only when certain signal levels are reached and that the output remains constant below those levels. This form of limiting can also be thought of as a special case of that shown in Fig. 5.9. Imagine, for example, that the clipping level in Fig. 5.9(b) is raised to a positive value; then the result is the same as Fig. 5.10(a) Limiting can be accomplished using biased diodes. Such circuits rely on the fact that diodes have very low impedances when they are forward biased and are essentially open circuits when reverse biased. If a certain point in a circuit, such as the output of an amplifier, is connected through a very small impedance to a constant voltage, then the voltage at the circuit point cannot differ significantly from the constant voltage. We say in this case that the point is clamped to the fixed voltage. An ideal, forward-biased diode is like a closed switch if it is connected between a point in a circuit and a fixed voltage source, the diode very effectively holds the boint to the fixed voltage. Diodes can be connected in operational amplifier circuits, as well as other circuits, e 2000 by CRC Press LLC© 2000 by CRC Press LLC the gain of the device. This is the region of linear operation. In these examples, the devices are assumed to have unity gain, so the slope of each line in the linear region is 1. Figure 5.10 illustrates a somewhat different kind of limiting action. Instead of the positive or negative peaks being clipped, the output follows the input when the signal is above or below a certain level. The transfer characteristics show that linear operation occurs only when certain signal levels are reached and that the output remains constant below those levels. This form of limiting can also be thought of as a special case of that shown in Fig. 5.9. Imagine, for example, that the clipping level in Fig. 5.9(b) is raised to a positive value; then the result is the same as Fig. 5.10(a). Limiting can be accomplished using biased diodes. Such circuits rely on the fact that diodes have very low impedances when they are forward biased and are essentially open circuits when reverse biased. If a certain point in a circuit, such as the output of an amplifier, is connected through a very small impedance to a constant voltage, then the voltage at the circuit point cannot differ significantly from the constant voltage. We say in this case that the point is clamped to the fixed voltage. An ideal, forward-biased diode is like a closed switch, so if it is connected between a point in a circuit and a fixed voltage source, the diode very effectively holds the point to the fixed voltage. Diodes can be connected in operational amplifier circuits, as well as other circuits, FIGURE 5.9 Waveforms and transfer characteristics of limiting circuits. (Source: T.F. Bogart, Jr., Electronic Devices and Circuits, 3rd ed., Columbus, Ohio: Macmillan/Merrill, 1993, p. 676. With permission.)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有