正在加载图片...
工程科学学报,第40卷,第4期:453-460,2018年4月 Chinese Journal of Engineering,Vol.40,No.4:453-460,April 2018 DOI:10.13374/j.issn2095-9389.2018.04.008:http://journals.ustb.edu.cn RH真空室内气泡行为的研究 赵立华)四,郭建龙》,徐佳亮》,张超杰) 1)北京科技大学治金与生态工程学院,北京1000832)北京科技大学钢铁治金新技术国家重点实验室,北京100083 ☒通信作者,E-mail:zhaolihua(@metall.ustb.edu.cn 摘要Ruhrstahl--Hereaeus(RH)上升管内的气液两相流是整个装置的重要动力源,并对钢液的流动、混匀及精炼过程有重 要影响.上升管及真空室内的气液两相流决定了钢包内钢液的流动状态,为了研究真空室及上升管内气液两相流,通过1:6的 3O0tRH的物理模型模拟了RH上升管及真空室内气泡行为过程,并测量了RH循环流量的变化用于计算上升管内含气率以 及气泡运动速度最终得到气泡在真空室内的停留时间,同时记录了气泡在真空室内的存在形式.气泡在真空室的存在形式的 主要影响因素为提升气体流量,研究发现了气泡从规则独立的大气泡经历聚合长大,碰撞破碎成小气泡,最后变成小气泡和 不规则大气泡共存的现象.液面高度达到80mm之后,气泡在真空室内的停留时间达到一个平衡值,不再随真空室液面高度 的增加而发生改变.当提升气体量达3000L·min',气泡停留时间减小趋势弱,对应3000L·min'情况下,真空室内气泡开始 聚合长大.研究认为对于300tRH的真空室液面高度应为80mm,提升气体量应在3500L·min1左右,优化后,脱碳时间由原 工艺的21.4min缩短至现工艺的17.5min. 关键词RH精炼:气泡行为;脱碳:真空室;含气率 分类号TF769.9 Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl- Heraeus ZHAO Li-hua,GUO Jian-long,XU Jia-liang?,ZHANG Chao-jie 1)School of Metallurgy and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 2)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China Corresponding author,E-mail:zhaolihua@metall.ustb.edu.cn ABSTRACT The gas-liquid two-phase flow in the up leg of the Ruhrstahl-Hereaeus (RH)unit is one of the main momentum sources of the whole device,and it affects the flow state of the molten steel in the ladle.A physical model of 300t RH in 1:6 ratio was set up to simulate the bubble behavior process and to measure the change of the RH circulation flow in the up leg and in the vacuum chamber.The gas-liquid fraction and the movement velocity of bubbles were measured to assess the residence time of the bubbles in the vacuum chamber.In addition,the formation of the bubbles at different values of the RH circulation flow and liquid-level height in the vacuum chamber were recorded by a high-speed camera.One of the main factors influencing the bubble formation is the increase of the lifting gas flow in the vacuum chamber.With the increase of blowing gas,the large independent bubbles undergo multiple colli- sions,break into small bubbles,and finally small and large irregular-sized bubbles coexist.When the liquid height is >80 mm,the residence time of the bubbles in the vacuum chamber achieves a stable value and cannot be further affected by the increase of the lig- uid-level height in the vacuum chamber.At a lifting gas flow of 3000L*min,a weak decreasing trend of the residence time of bub- bles is observed,and the bubbles start polymerizing in the vacuum chamber.In conclusion,for the 300t RH physical model,the liquid height in the vacuum chamber is recommended to be 80 mm,whereas the lifting gas flow should be set at 3500Lmin.After these 收稿日期:2017-09-07 基金项目:国家自然科学基金资助项目(51404022)工程科学学报,第 40 卷,第 4 期: 453--460,2018 年 4 月 Chinese Journal of Engineering,Vol. 40,No. 4: 453--460,April 2018 DOI: 10. 13374 /j. issn2095--9389. 2018. 04. 008; http: / /journals. ustb. edu. cn RH 真空室内气泡行为的研究 赵立华1) ,郭建龙2) ,徐佳亮2) ,张超杰2) 1) 北京科技大学冶金与生态工程学院,北京 100083 2) 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083 通信作者,E-mail: zhaolihua@ metall. ustb. edu. cn 摘 要 Ruhrstahl--Hereaeus ( RH) 上升管内的气液两相流是整个装置的重要动力源,并对钢液的流动、混匀及精炼过程有重 要影响. 上升管及真空室内的气液两相流决定了钢包内钢液的流动状态,为了研究真空室及上升管内气液两相流,通过1∶ 6的 300 t RH 的物理模型模拟了 RH 上升管及真空室内气泡行为过程,并测量了 RH 循环流量的变化用于计算上升管内含气率以 及气泡运动速度最终得到气泡在真空室内的停留时间,同时记录了气泡在真空室内的存在形式. 气泡在真空室的存在形式的 主要影响因素为提升气体流量,研究发现了气泡从规则独立的大气泡经历聚合长大,碰撞破碎成小气泡,最后变成小气泡和 不规则大气泡共存的现象. 液面高度达到 80 mm 之后,气泡在真空室内的停留时间达到一个平衡值,不再随真空室液面高度 的增加而发生改变. 当提升气体量达 3000 L·min - 1,气泡停留时间减小趋势弱,对应 3000 L·min - 1情况下,真空室内气泡开始 聚合长大. 研究认为对于 300 t RH 的真空室液面高度应为 80 mm,提升气体量应在 3500 L·min - 1左右,优化后,脱碳时间由原 工艺的 21. 4 min 缩短至现工艺的 17. 5 min. 关键词 RH 精炼; 气泡行为; 脱碳; 真空室; 含气率 分类号 TF769. 9 收稿日期: 2017--09--07 基金项目: 国家自然科学基金资助项目( 51404022) Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl-- Heraeus ZHAO Li-hua1)  ,GUO Jian-long2) ,XU Jia-liang2) ,ZHANG Chao-jie2) 1) School of Metallurgy and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 2) State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China Corresponding author,E-mail: zhaolihua@ metall. ustb. edu. cn ABSTRACT The gas--liquid two-phase flow in the up leg of the Ruhrstahl--Hereaeus ( RH) unit is one of the main momentum sources of the whole device,and it affects the flow state of the molten steel in the ladle. A physical model of 300 t RH in 1∶ 6 ratio was set up to simulate the bubble behavior process and to measure the change of the RH circulation flow in the up leg and in the vacuum chamber. The gas--liquid fraction and the movement velocity of bubbles were measured to assess the residence time of the bubbles in the vacuum chamber. In addition,the formation of the bubbles at different values of the RH circulation flow and liquid-level height in the vacuum chamber were recorded by a high-speed camera. One of the main factors influencing the bubble formation is the increase of the lifting gas flow in the vacuum chamber. With the increase of blowing gas,the large independent bubbles undergo multiple colli￾sions,break into small bubbles,and finally small and large irregular-sized bubbles coexist. When the liquid height is > 80 mm,the residence time of the bubbles in the vacuum chamber achieves a stable value and cannot be further affected by the increase of the liq￾uid-level height in the vacuum chamber. At a lifting gas flow of 3000 L·min - 1,a weak decreasing trend of the residence time of bub￾bles is observed,and the bubbles start polymerizing in the vacuum chamber. In conclusion,for the 300 t RH physical model,the liquid height in the vacuum chamber is recommended to be 80 mm,whereas the lifting gas flow should be set at 3500 L·min - 1 . After these
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有