正在加载图片...
398 工程科学学报,第43卷,第3期 织中各相的状态、体积分数和分布有显著的差异 partitioning treatment of a commercial low silicon boron steel. (2)随着马氏体和残留奥氏体体积分数的增 Mater Sci Eng A,2017,707:538 大,铁素体体积分数的减小,实验钢屈服和抗拉强 [8]Xiong X C.Chen B,Huang M X,et al.The effect of morphology 度同时升高,而延伸率呈先增大后减小趋势.软韧 on the stability of retained austenite in a quenched and partitioned 相铁素体体积分数的减小和硬相马氏体体积分数 steel.Scripta Mater,2013,68(5):321 的增大导致屈服强度和抗拉强度增加.相对回火 [9]Morsdorf L.Jeannin O.Barbier D,et al.Multiple mechanism of 马氏体,淬火马氏体对强度的提升更显著,在拉伸 lath martensite plasticity.Acta Mater,2016,121:202 过程中转变的残留奥氏体的量是引起延伸率变化 [10]Zhang B.Du LX,Dong Y,et al.Structure-property relationship in 的主要原因,组织中显著的带状组织会造成颈缩 novel low carbon hot-rolled TRIP steels via thermo-mechanical 后延伸率的明显降低. controlled processing and coiling.Mater Sci Eng A,2020,771: (3)随着真应变的增大,加工硬化率呈减小的 138643 趋势.在真应变大于2%后的大范围内,对于加工 [11]Maruyama H.X-ray measurement of retained austenite volume 硬化率,DHI钢>DH2钢>DH3钢,主要是因为受 fraction.JJpn Soc Heat Treat,1977,17:198 铁素体体积分数的影响.在真应变大于5.73%后, [12]Sugimoto K,Sakaguchi J,lida T,et al.Stretch-flangeability of a DH2钢的加工硬化率高于DH1钢和DH3钢,主要 high-strength TRIP type bainitic sheet steel.IS//Int,2000,40(9): 是DH2钢中更多的残留奥氏体在拉伸过程中发生 92 转变,更显著的TRP效应造成的 [13]Zhu G M,Kuang S,Chen G J,et al.Effect of martensite on yield (4)DH2钢获得最佳综合力学性能,屈服强度 characteristics of cold rolled C-Si-Mn dual phase steel.Mater 达到880MPa.抗拉强度达到1497MPa.均匀延伸 Eng,2011(4):66 率为6.71%,断后伸长率为8.8%,颈缩后延伸率为 (朱国明,邝霜,陈贵江,等.马氏体对C-Si-M冷轧双相钢屈服 2.09%,屈强比0.59,强塑积可以达到13.17GPa%, 特性的影响.材料工程,2011(4):66) 是由于DH2钢中合适的相构成造成的. [14]Akbarpour M R.Ekrami A.Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase(DP)steels. 参考文献 Ma1 er Sci Eng A,2008,477(1-2):306 [1]Ding R.DaiZB,Huang MX,et al.Effect of pre-existed austenite [15]Sayed AA,Kheirandish S.Affect of the tempering temperature on on austenite reversion and mechanical behavior of an the microstructure and mechanical properties of dual phase steels. Fe-0.2C-8Mn-2Al medium Mn steel.Acta Mater,2018,147:59 Mater Sci Eng A,2012,532:21 [2]Michiuchi M,Nambu S,Ishimoto Y,et al.Relationship between [16]Zhu B,Liu Z,Wang Y N,et al.Application of a model for local deformation behavior and crystallographic features of as- quenching and partitioning in hot stamping of high-strength steel quenched lath martensite during uniaxial tensile deformation.Acta Metall Mater Trans A,2018,49(4):1304 Ma1er2009,57(18):5283 [17]DuC,Hoefnagels JPM,Vaes R,et al.Plasticity of lath martensite [3] Sun JJ,Jiang T,Wang Y J,et al.Effect of grain refinement on by sliding of substructure boundaries.Scripta Mater,2016,120:37 high-carbon martensite transformation and its mechanical [18]Chiang J,Lawrence B,Boyd J D,et al.Effect of microstructure on properties.Mater Sci Eng A,2018,726:342 retained austenite stability and work hardening of TRIP steels. [4]Sarkar R,Chandra S K,De P S,et al.Evaluation of a ductile Mater Sci Eng4,2011,528(13-14:4516 tearing resistance of dual-phase DP 780 grade automotive steel [19]Sun B H,Palanisamy D,Ponge D,et al.Revealing fracture sheet from essential work of fracture (EWF)tests.Theor Appl mechanisms of medium manganese steels with and without delta- Frac1Mech,2019.103:102278 ferrite.Acta Mater,2019,164:683 [5]ZhaoZZ.Tong TT,Liang J H,et al.Microstructure,mechanical [20]Scott C P,Amirkhiz B S,Pushkareva I,et al.New insights into properties and fracture behavior of ultra-high strength dual-phase martensite strength and the damage behavior of dual phase steels. steel.Mater Sci Eng A,2014,618:182 Acta Mater,2018,159:112 [6]Seo E J,Cho L,De Cooman B C.Application of quenching and [21]Ren Y Q,Xie Z J,Shang C J.Microstructure regulation and partitioning (Q&P)processing to press hardening steel.Metall mechanical properties of low-carbon multiphase steels.J Univ Sci Mater Trans A,2014,45(9:4022 Technol Beijing,2013,35(5):592 [7]Kong H,Chao Q,Cai M H,et al.One-step quenching and (任勇强,谢振家,尚成嘉.低碳多相钢的组织调控与力学性能.织中各相的状态、体积分数和分布有显著的差异. (2)随着马氏体和残留奥氏体体积分数的增 大,铁素体体积分数的减小,实验钢屈服和抗拉强 度同时升高,而延伸率呈先增大后减小趋势. 软韧 相铁素体体积分数的减小和硬相马氏体体积分数 的增大导致屈服强度和抗拉强度增加. 相对回火 马氏体,淬火马氏体对强度的提升更显著,在拉伸 过程中转变的残留奥氏体的量是引起延伸率变化 的主要原因,组织中显著的带状组织会造成颈缩 后延伸率的明显降低. (3)随着真应变的增大,加工硬化率呈减小的 趋势. 在真应变大于 2% 后的大范围内,对于加工 硬化率,DH1 钢>DH2 钢>DH3 钢,主要是因为受 铁素体体积分数的影响. 在真应变大于 5.73% 后, DH2 钢的加工硬化率高于 DH1 钢和 DH3 钢,主要 是 DH2 钢中更多的残留奥氏体在拉伸过程中发生 转变,更显著的 TRIP 效应造成的. (4)DH2 钢获得最佳综合力学性能,屈服强度 达到 880 MPa,抗拉强度达到 1497 MPa,均匀延伸 率为 6.71%,断后伸长率为 8.8%,颈缩后延伸率为 2.09%,屈强比 0.59,强塑积可以达到 13.17 GPa·%, 是由于 DH2 钢中合适的相构成造成的. 参    考    文    献 Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel. Acta Mater, 2018, 147: 59 [1] Michiuchi M, Nambu S, Ishimoto Y, et al. Relationship between local deformation behavior and crystallographic features of as￾quenched lath martensite during uniaxial tensile deformation. Acta Mater, 2009, 57(18): 5283 [2] Sun J J, Jiang T, Wang Y J, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties. Mater Sci Eng A, 2018, 726: 342 [3] Sarkar R, Chandra S K, De P S, et al. Evaluation of a ductile tearing resistance of dual-phase DP 780 grade automotive steel sheet from essential work of fracture (EWF) tests. Theor Appl Fract Mech, 2019, 103: 102278 [4] Zhao Z Z, Tong T T, Liang J H, et al. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A, 2014, 618: 182 [5] Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning (Q& P) processing to press hardening steel. Metall Mater Trans A, 2014, 45(9): 4022 [6] [7] Kong H, Chao Q, Cai M H, et al. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A, 2017, 707: 538 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 [8] Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanism of lath martensite plasticity. Acta Mater, 2016, 121: 202 [9] Zhang B, Du L X, Dong Y, et al. Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling. Mater Sci Eng A, 2020, 771: 138643 [10] Maruyama H. X-ray measurement of retained austenite volume fraction. J Jpn Soc Heat Treat, 1977, 17: 198 [11] Sugimoto K, Sakaguchi J, Iida T, et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel. ISIJ Int, 2000, 40(9): 92 [12] Zhu G M, Kuang S, Chen G J, et al. Effect of martensite on yield characteristics of cold rolled C–Si–Mn dual phase steel. J Mater Eng, 2011(4): 66 (朱国明, 邝霜, 陈贵江, 等. 马氏体对C–Si–Mn冷轧双相钢屈服 特性的影响. 材料工程, 2011(4):66) [13] Akbarpour M R, Ekrami A. Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Mater Sci Eng A, 2008, 477(1-2): 306 [14] Sayed A A, Kheirandish S. Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Mater Sci Eng A, 2012, 532: 21 [15] Zhu B, Liu Z, Wang Y N, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel. Metall Mater Trans A, 2018, 49(4): 1304 [16] Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries. Scripta Mater, 2016, 120: 37 [17] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 [18] Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta￾ferrite. Acta Mater, 2019, 164: 683 [19] Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behavior of dual phase steels. Acta Mater, 2018, 159: 112 [20] Ren Y Q, Xie Z J, Shang C J. Microstructure regulation and mechanical properties of low-carbon multiphase steels. J Univ Sci Technol Beijing, 2013, 35(5): 592 (任勇强, 谢振家, 尚成嘉. 低碳多相钢的组织调控与力学性能. [21] · 398 · 工程科学学报,第 43 卷,第 3 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有