正在加载图片...
赵佳伟等:电场驱动熔融喷射沉积高分辨率3D打印 ·661· 150μm (a) 200Am 50 pm (b) 图13电场驱动熔融喷射沉积高分辨率3D打印的组织支架和网格三维结构.()组织支架:(b)网格三维结构 Fig.13 Fabrication of tissue scaffold and three-dimensional grid structure using the high-resolution fused deposition 3D printing method based on electric-field-driven jetting system:(a)tissue scaffold;(b)three-dimensional grid structure (4)一种双加热集成式喷头,通过对储料筒和[]0 nses MS,Sutanto E,Ferreira PM,tal.Mechanisms,eapa- 喷嘴加热温度精准调控,能够解决熔融材料打印喷 bilities,and applications of high-resolution electrohydrodynamie jet printing.Smal,2015.11(34):4237 头易堵、打印稳定性和连续性差、喷头不同区域温度 [8]Lan H B,Li DC,Lu B H.Micro-and nanoscale 3D printing.Sci- 精准调控的难题 entia Sinica Technol),2015,45(9):919 (兰红波,李涤尘,卢秉恒.微纳尺度3D打印.中国科学:技 参考文献 术科学,2015,45(9):919) [1]Ngo TD,Kashani A,Imbalzano C,et al.Additive manufacturing [9]Dalton P D.Melt electrowriting with additive manufacturing princi- (3D printing):a review of materials,methods,applications and ples.Curr Opin Biomed Eng,2017,2:49 challenges.Composites Part B:Eng,2018,143:172 [10]Hrynevich A,Elci B S,Haigh J N,et al.Dimension-based de- [2]MacDonald E,Wicker R.Multiprocess 3D printing for increasing sign of melt electrowritten scaffolds.Small,2018,14 (22 ) component functionality.Science,2016,353(6307):1512 1800232 [3]Lewis J A,Ahn B Y.Device fabrication:Three-dimensional prin- [11]Hochleitner G,Juingst T,Brown T D,et al.Additive manufac- ted electronics.Nature,2015,518:42 turing of scaffolds with sub-micron filaments via melt electrospin- [4]Zhang B,Seong B,Nguyen V,et al.3D printing of high-resolu ning writing.Biofabrication,2015,7(3):035002 tion PLA-based structures by hybrid electrohydrodynamic and fused [12]Muerza-Cascante M L,Haylock D,Hutmacher D W,et al.Melt deposition modeling techniques.JMicromech Microeng,2016,26 electrospinning and its technologization in tissue engineering.Tis- (2):025015 sue Eng Part B,Rev,2015,21(2)187 [5] Bae J,Lee J,Hyun Kim S.Effects of polymer properties on jetting [13]Feiner R,Fleischer S,Shapira A,et al.Multifunctional degrad- performance of electrohydrodynamic printing.JAppl Polym Sci, able electronic scaffolds for cardiac tissue engineering.Con- 2017,134(35):45044 trolled Release,2018,281:189 [6]Zou S T,Lan H B,Qian L,et al.Effects and rules of E-jet 3D [14]Gremare A,Guduric V,Bareille R,et al.Characterization of printing process parameters on Taylor cone and printed patters. printed PLA scaffolds for bone tissue engineering.Biomed Ma- Chin J Eng,2018,40(3):373 ter Res Part A,2018,106(4):887 (邹淑亭,兰红波,钱垒,等.电流体动力喷射3D打印工艺参 [15]Ovsianikov A,Khademhosseini A,Mironov V.The synergy of 数对泰勒锥和打印图形的影响和规律.工程科学学报,2018, scaffold-based and scaffold-free tissue engineering strategies. 40(3):373) Trends Biotechnol,2018,36(4):348赵佳伟等: 电场驱动熔融喷射沉积高分辨率 3D 打印 图 13 电场驱动熔融喷射沉积高分辨率 3D 打印的组织支架和网格三维结构. (a) 组织支架; (b) 网格三维结构 Fig. 13 Fabrication of tissue scaffold and three鄄dimensional grid structure using the high鄄resolution fused deposition 3D printing method based on electric鄄field鄄driven jetting system: (a) tissue scaffold; (b) three鄄dimensional grid structure (4)一种双加热集成式喷头,通过对储料筒和 喷嘴加热温度精准调控,能够解决熔融材料打印喷 头易堵、打印稳定性和连续性差、喷头不同区域温度 精准调控的难题. 参 考 文 献 [1] Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Eng, 2018, 143: 172 [2] MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science, 2016, 353(6307): 1512 [3] Lewis J A, Ahn B Y. Device fabrication: Three鄄dimensional prin鄄 ted electronics. Nature, 2015, 518: 42 [4] Zhang B, Seong B, Nguyen V, et al. 3D printing of high鄄resolu鄄 tion PLA鄄based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng, 2016, 26 (2): 025015 [5] Bae J, Lee J, Hyun Kim S. Effects of polymer properties on jetting performance of electrohydrodynamic printing. J Appl Polym Sci, 2017, 134(35): 45044 [6] Zou S T, Lan H B, Qian L, et al. Effects and rules of E鄄jet 3D printing process parameters on Taylor cone and printed patterns. Chin J Eng, 2018, 40(3): 373 (邹淑亭, 兰红波, 钱垒, 等. 电流体动力喷射3D 打印工艺参 数对泰勒锥和打印图形的影响和规律. 工程科学学报, 2018, 40(3): 373) [7] Onses M S, Sutanto E, Ferreira P M, et al. Mechanisms, capa鄄 bilities, and applications of high鄄resolution electrohydrodynamic jet printing. Small, 2015, 11(34): 4237 [8] Lan H B, Li D C, Lu B H. Micro鄄and nanoscale 3D printing. Sci鄄 entia Sinica (Technol), 2015, 45(9): 919 (兰红波, 李涤尘, 卢秉恒. 微纳尺度 3D 打印. 中国科学: 技 术科学, 2015, 45(9): 919) [9] Dalton P D. Melt electrowriting with additive manufacturing princi鄄 ples. Curr Opin Biomed Eng, 2017, 2: 49 [10] Hrynevich A, El觭i B S, Haigh J N, et al. Dimension鄄based de鄄 sign of melt electrowritten scaffolds. Small, 2018, 14 ( 22 ): 1800232 [11] Hochleitner G, J俟ngst T, Brown T D, et al. Additive manufac鄄 turing of scaffolds with sub鄄micron filaments via melt electrospin鄄 ning writing. Biofabrication, 2015, 7(3): 035002 [12] Muerza鄄Cascante M L, Haylock D, Hutmacher D W, et al. Melt electrospinning and its technologization in tissue engineering. Tis鄄 sue Eng Part B, Rev, 2015, 21(2): 187 [13] Feiner R, Fleischer S, Shapira A, et al. Multifunctional degrad鄄 able electronic scaffolds for cardiac tissue engineering. J Con鄄 trolled Release, 2018, 281: 189 [14] Gr佴mare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Ma鄄 ter Res Part A, 2018, 106(4): 887 [15] Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold鄄based and scaffold鄄free tissue engineering strategies. Trends Biotechnol, 2018, 36(4): 348 ·661·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有