阮竹恩等:基于絮团弦长测定的全尾砂絮凝沉降行为 987. consumptions of flocculants on interface sedimentation velocity of JS Afr Inst Min Metall,2012,112(11):939 unclassified tailings slurry.Chin J Nonferrous Met,2017,27(2): [18]Gheshlaghi M E,Goharrizi A S,Shahrivar AA,et al.Modeling 318 industrial thickener using computational fluid dynamics(CFD),a (张钦礼,王石,王新民.絮凝剂单耗对全尾砂浆浑液面沉速的 case study:Tailing thickener in the Sarcheshmeh copper mine./nt 影响规律.中国有色金属学报,2017,27(2):318) J Min Sci Technol,2013.23(6):885 [8]Wang Y,Wu A X,Wang H J,et al.Influence mechanism of [19]Ruan Z E,Li C P,Shi C.Numerical simulation of flocculation and flocculant dosage on tailings thickening.J Univ Sci Technol settling behavior of whole-tailings particles in deep-cone Beijing,2013,35(11):1419 thickener.J Cent South Univ,2016,23(3):740 (王勇,吴爱祥,王洪江,等.絮凝剂用量对尾矿浓密的形响机理 [20]Liang L,Peng Y L,Tan J K,et al.A review of the modern 北京科技大学学报,2013,35(11):1419) characterization techniques for flocs in mineral processing.Miner [9]Jiao HZ,Wang H J,Wu A X,et al.Rule and mechanism of Eg,2015,84:130 flocculation sedimentation of unclassified tailings.J Univ Sci [21]Blanco A.Fuente E,Negro C,et al.Flocculation monitoring: Technol Beijing,2010,32(6):702 focused beam reflectance measurement as a measurement tool (焦华枯,王洪江,吴爱祥,等.全尾砂絮凝沉降规律及其机理 Can JChem Eng,2002,80(4):1 北京科技大学学报,2010,32(6):702) [22]SenaputraA,Jones F,Fawell PD,et al.Focused beam reflectance [10]Wu A X.Zhou J,Yin S H,et al.Influence factors on flocculation measurement for monitoring the extent and efficiency of sedimentation of unclassified tailings.Chin J Nonferrous Met, flocculation in mineral systems.A/ChE,2014,60(1):251 2016,26(2):439 [23]Heath A R,Fawell P D,Bahri P A,et al.Estimating average (吴爱样,周靓,尹升华,等.全尾砂絮凝沉降的影响因素.中国 particle size by focused beam reflectance measurement (FBRM). 有色金属学报,2016,26(2):439) PartPart Syst Charact,2002,19(2):84 [11]Nguyen T P,Hankins N P,Hilal N.Effect of chemical [24]Spicer P T,Keller W,Pratsinis S E.The effect of impeller type on composition on the flocculation dynamics of latex-based synthetic floc size and structure during shear-induced flocculation.Colloid activated sludge.JHazard Mater,2007,139(2):265 Interface Sci,1996,184(1):112 [12]Botha L,Soares J B P.The influence of tailings composition on [25]Mietta F,Chassagne C,Winterwerp J C.Shear-induced flocculation.Can JChem Eng,2015,93(9):1514 [13]Li S L,Gao L H,Cao Y J,et al.Effect of pH on the flocculation flocculation of a suspension of kaolinite as function of pH and salt behaviors of kaolin using a pH-sensitive copolymer.Water Sci concentration.J Colloid Interface Sci,2009.336(1):134 Technol,2016,74(3:729 [26]Hasan A,Fatehi P.Cationic kraft lignin-acrylamide as a flocculant [14]Konduri M K R,Fatehi P.Influence of pH and ionic strength on for clay suspensions:1)molecular weight effect.Sep Purif flocculation of clay suspensions with cationic xylan copolymer. Technol,2018,207:213 Colloid SurfA,2017,530:20 [27]Dwari R K,Angadi S I,Tripathy S K.Studies on floccu- [15]Carissimi E,Rubio J.Polymer-bridging flocculation performance lation characteristics of chromite's ore process tailing:Effect of using turbulent pipe flow.Miner Eng,2015,70:20 flocculants ionicity and molecular mass.Colloid SurfA,2018,537: [16]Wu A X,Ruan Z E,Wang J D,et al.Optimizing the flocculation 467 behavior of ultrafine tailings by ultra-flocculation.Chin J Eng, [28]Kinoshita T.Nakaishi K.Kuroda Y.Determination of kaolinite 2019,41(8):981 floc size and structure using interface settling velocity.Appl Clay (吴爱祥,阮竹恩,王建栋,等.基于超级絮凝的超细尾砂絮凝行 Sci,2017,148:11 为优化.工程科学学报,2019,41(8):981) [29]Zhang Y Q,Gao W J,Fatehi P.Structure and settling performance [17]Nguyen T V,Farrow J B,Smith J,et al.Design and development of aluminum oxide and poly (acrylic acid)flocs in suspension of a novel thickener feedwell using computational fluid dynamics. systems.Sep Purif Technol,2019,215:115consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry. Chin J Nonferrous Met, 2017, 27(2): 318 (张钦礼, 王石, 王新民. 絮凝剂单耗对全尾砂浆浑液面沉速的 影响规律. 中国有色金属学报, 2017, 27(2):318) Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419 (王勇, 吴爱祥, 王洪江, 等. 絮凝剂用量对尾矿浓密的影响机理. 北京科技大学学报, 2013, 35(11):1419) [8] Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. J Univ Sci Technol Beijing, 2010, 32(6): 702 (焦华喆, 王洪江, 吴爱祥, 等. 全尾砂絮凝沉降规律及其机理. 北京科技大学学报, 2010, 32(6):702) [9] Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. Chin J Nonferrous Met, 2016, 26(2): 439 (吴爱祥, 周靓, 尹升华, 等. 全尾砂絮凝沉降的影响因素. 中国 有色金属学报, 2016, 26(2):439) [10] Nguyen T P, Hankins N P, Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. J Hazard Mater, 2007, 139(2): 265 [11] Botha L, Soares J B P. The influence of tailings composition on flocculation. Can J Chem Eng, 2015, 93(9): 1514 [12] Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer. Water Sci Technol, 2016, 74(3): 729 [13] Konduri M K R, Fatehi P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloid Surf A, 2017, 530: 20 [14] Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng, 2015, 70: 20 [15] Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. Chin J Eng, 2019, 41(8): 981 (吴爱祥, 阮竹恩, 王建栋, 等. 基于超级絮凝的超细尾砂絮凝行 为优化. 工程科学学报, 2019, 41(8):981) [16] Nguyen T V, Farrow J B, Smith J, et al. Design and development of a novel thickener feedwell using computational fluid dynamics. [17] J S Afr Inst Min Metall, 2012, 112(11): 939 Gheshlaghi M E, Goharrizi A S, Shahrivar A A, et al. Modeling industrial thickener using computational fluid dynamics (CFD), a case study: Tailing thickener in the Sarcheshmeh copper mine. Int J Min Sci Technol, 2013, 23(6): 885 [18] Ruan Z E, Li C P, Shi C. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener. J Cent South Univ, 2016, 23(3): 740 [19] Liang L, Peng Y L, Tan J K, et al. A review of the modern characterization techniques for flocs in mineral processing. Miner Eng, 2015, 84: 130 [20] Blanco A, Fuente E, Negro C, et al. Flocculation monitoring: focused beam reflectance measurement as a measurement tool. Can J Chem Eng, 2002, 80(4): 1 [21] Senaputra A, Jones F, Fawell P D, et al. Focused beam reflectance measurement for monitoring the extent and efficiency of flocculation in mineral systems. AIChE J, 2014, 60(1): 251 [22] Heath A R, Fawell P D, Bahri P A, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). Part Part Syst Charact, 2002, 19(2): 84 [23] Spicer P T, Keller W, Pratsinis S E. The effect of impeller type on floc size and structure during shear-induced flocculation. J Colloid Interface Sci, 1996, 184(1): 112 [24] Mietta F, Chassagne C, Winterwerp J C. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration. J Colloid Interface Sci, 2009, 336(1): 134 [25] Hasan A, Fatehi P. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1) molecular weight effect. Sep Purif Technol, 2018, 207: 213 [26] Dwari R K, Angadi S I, Tripathy S K. Studies on flocculation characteristics of chromite ’s ore process tailing: Effect of flocculants ionicity and molecular mass. Colloid Surf A, 2018, 537: 467 [27] Kinoshita T, Nakaishi K, Kuroda Y. Determination of kaolinite floc size and structure using interface settling velocity. Appl Clay Sci, 2017, 148: 11 [28] Zhang Y Q, Gao W J, Fatehi P. Structure and settling performance of aluminum oxide and poly (acrylic acid) flocs in suspension systems. Sep Purif Technol, 2019, 215: 115 [29] 阮竹恩等: 基于絮团弦长测定的全尾砂絮凝沉降行为 · 987 ·