正在加载图片...
·1508. 工程科学学报,第40卷,第12期 (a) b 5μm 5 um (d) 脆性剥落 5μm 图8磨损亚表面形貌.(a)250℃等温:(b)300℃等温:(c)350℃等温:(d)淬火回火 Fig.8 SEM micrographs of the wear sub-surfaces of investigated samples austempered at different temperatures:(a)250C;(b)300C;(c)350 ℃;(d)tempered martensite 试验所用回火马氏体钢 Royal Society A:Mathematical,Physical and Engineering Sci- 图8(d)为淬火回火试样的磨损亚表面形貌,由 ences.London,2009:1 于淬火回火试样的硬度值较大,所以塑性变形区的 [3]Al-Hamdany A.Mechanical Property Modelling of Steels [Dissera tion].Bhagdad:University of Technology Bhagdad,2010 厚度较小,但由于塑性较差,在变形区内有裂纹产 [4]Yoozbashi M N,Yazdani S,Wang T S.Design of a new nano- 生,在磨损的过程中裂纹扩展,使表面金属断裂.利 structured,high-Si bainitic steel with lower cost production.Mater 用能谱仪检测①号和②号位置的原子质量分数推断 Des,2011,32(6):3248 相应成分及比例可知,①号位置剥落的主要成分为 [5]Yang J,Wang T S,Zhang B,et al.Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel.Wear, Fe0及FezO,的组合,因磨损后氧化而从基体剥落, 2012,282-283:81 造成质量损失增加,耐磨性相对超细贝氏体钢较差。 [6]Zhang P,Zhang F C,Yan Z G,et al.Wear property of low-tem- 可见回火淬火试样由于存在脆性剥落,导致犁沟深 perature bainite in the surface layer of a carburized low carbon 度的增加及磨损量提高 steel..Wear,2011,271(5-6):697 [7]WangTS,Yang J,Shang C J,et al.Sliding friction surface mi- 3结论 crostructure and wear resistance of 9SiCr steel with low-temperature austempering treatment.Suf Coat Technol,2008,202(16): (1)设计中碳低合金钢,在250,300和350℃下 4036 等温淬火可得到超细贝氏体组织,贝氏体片层厚度 [8]Rementeria R,Garcia 1,Aranda MM,et al.Reciprocating-slid- 随等温淬火温度的降低而减小,且硬度随之增加 ing wear behavior of nanostructured and ultra-fine high-silicon bai- (2)超细贝氏体钢磨损面形貌以平直的犁沟为 nitic steels.Wear,2015,338-339:202 [9]Zhang F C,Long X Y,Kang J,et al.Cyclic deformation behav- 主,主要的磨损机理为显微切削. iors of a high strength carbide-free bainitic steel.Mater Des, (3)超细贝氏体钢的耐磨性能优于回火马氏 2016,94:1 体,且在一定温度范围内随等温温度的降低,耐磨性 [10]Sourmail T,Caballero F G,Garcia-Mateo C,et al.Evaluation of 能提高.超细贝氏体钢的组织细化及磨损过程中产 potential of high Si high C steel nanostructured bainite for wear 生的TRP效应是提高其耐磨性的关键 and fatigue applications.Mater Sci Technol,2013,29 (10): 1166 参考文献 [11]Bakshi S D.Leiro A,Prakash B,et al.Dry rolling/sliding wear of nanostructured bainite.Wear,2014,316(1-2):70 [1]Caballero F G.Bhadeshia H,Mawella K JA,et al.Very strong [12]Leiro A,Vuorinen E,Sundin K G.et al.Wear of nano-struc- low temperature bainite.Mater Sci Technol,2002,18(3):279 tured carbide-free bainitic steels under dry rolling-sliding condi [2]Bhadeshia HK D H.Nanostructured bainite//Proceedings of the tions.Wear,2013,298-299:42工程科学学报,第 40 卷,第 12 期 图 8 磨损亚表面形貌 郾 (a) 250 益等温; (b) 300 益等温; (c) 350 益等温; (d) 淬火回火 Fig. 8 SEM micrographs of the wear sub鄄surfaces of investigated samples austempered at different temperatures: (a) 250 益 ; (b) 300 益 ; (c) 350 益 ; (d) tempered martensite 试验所用回火马氏体钢. 图 8(d)为淬火回火试样的磨损亚表面形貌,由 于淬火回火试样的硬度值较大,所以塑性变形区的 厚度较小,但由于塑性较差,在变形区内有裂纹产 生,在磨损的过程中裂纹扩展,使表面金属断裂. 利 用能谱仪检测淤号和于号位置的原子质量分数推断 相应成分及比例可知,淤号位置剥落的主要成分为 FeO 及 Fe2O3的组合,因磨损后氧化而从基体剥落, 造成质量损失增加,耐磨性相对超细贝氏体钢较差. 可见回火淬火试样由于存在脆性剥落,导致犁沟深 度的增加及磨损量提高. 3 结论 (1)设计中碳低合金钢,在 250、300 和 350 益下 等温淬火可得到超细贝氏体组织,贝氏体片层厚度 随等温淬火温度的降低而减小,且硬度随之增加. (2)超细贝氏体钢磨损面形貌以平直的犁沟为 主,主要的磨损机理为显微切削. (3)超细贝氏体钢的耐磨性能优于回火马氏 体,且在一定温度范围内随等温温度的降低,耐磨性 能提高. 超细贝氏体钢的组织细化及磨损过程中产 生的 TRIP 效应是提高其耐磨性的关键. 参 考 文 献 [1] Caballero F G, Bhadeshia H, Mawella K J A, et al. Very strong low temperature bainite. Mater Sci Technol, 2002, 18(3): 279 [2] Bhadeshia H K D H. Nanostructured bainite / / Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci鄄 ences. London, 2009: 1 [3] Al鄄Hamdany A. Mechanical Property Modelling of Steels [Disserta鄄 tion]. Bhagdad: University of Technology Bhagdad, 2010 [4] Yoozbashi M N, Yazdani S, Wang T S. Design of a new nano鄄 structured, high鄄Si bainitic steel with lower cost production. Mater Des, 2011, 32(6): 3248 [5] Yang J, Wang T S, Zhang B, et al. Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel. Wear, 2012, 282鄄283: 81 [6] Zhang P, Zhang F C, Yan Z G, et al. Wear property of low鄄tem鄄 perature bainite in the surface layer of a carburized low carbon steel. Wear, 2011, 271(5鄄6): 697 [7] Wang T S, Yang J, Shang C J, et al. Sliding friction surface mi鄄 crostructure and wear resistance of 9SiCr steel with low鄄temperature austempering treatment. Surf Coat Technol, 2008, 202 ( 16 ): 4036 [8] Rementeria R, Garc侏a I, Aranda M M, et al. Reciprocating鄄slid鄄 ing wear behavior of nanostructured and ultra鄄fine high鄄silicon bai鄄 nitic steels. Wear, 2015, 338鄄339: 202 [9] Zhang F C, Long X Y, Kang J, et al. Cyclic deformation behav鄄 iors of a high strength carbide鄄free bainitic steel. Mater Des, 2016, 94: 1 [10] Sourmail T, Caballero F G, Garcia鄄Mateo C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Mater Sci Technol, 2013, 29 ( 10 ): 1166 [11] Bakshi S D, Leiro A, Prakash B, et al. Dry rolling / sliding wear of nanostructured bainite. Wear, 2014, 316(1鄄2): 70 [12] Leiro A, Vuorinen E, Sundin K G, et al. Wear of nano鄄struc鄄 tured carbide鄄free bainitic steels under dry rolling鄄sliding condi鄄 tions. Wear, 2013, 298鄄299: 42 ·1508·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有