Agoi 1+2 UpD)o(D) Divide Cec+ G,4(1-mn)e0.6A响 e0.61B49 o,D) 1 4JBfBvcea, 1+ Vp or(vo)np Up 0.15e68421+ np JBfBVou, Vor(vi So: Given VD, JB, Walls >Cn Geometry: fB,8,i,V,Ag Gas U*,U ELM Can conclude P(Te)Ep(Te)>nu(Te)NOTE: m=i2B so real parameter is m not Then given also le( magnetic geometry)andm→Co→5p→EB Summary Geometry and Gas perating Additional Magentic Field Properties Parameters arameter p,向,V,4g E),exc(E DrB e 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 7 of 8JB so nm + np = e υBAg φi np υ p (VD ) σ + (VD ) 1 + 1 4 − η ) = ( n e 6.0 Ag φ i Divide: c V e σ nm ce σ + cn φAg + η u B 1 + np f J B nm 2 e 61.0 υ Ag φφ cn ⎛ ⎜1 + np ⎞ ⎟ ⎟ 1 − η u 1 = B i ⎜ nm ⎠ = η 1 + y u + D 4 c V f J e σ + ⎜ ⎜ ⎛ 1 + np ⎝ υ p σ (V )⎞ ⎟ = y → η u B B ⎝ nm ce σ + ⎠ ⎟ VD σ T (V D ) np υ p ∗ ε P σ + nm ce ⎛ n ⎞ * 2 15. 0 e ε υ Ag φφicn ⎜ ⎜1 + p ⎟ p B n ⎟ ⎝ m ⎠ y = V f J D υ pV σ (V ) ⎛ ⎜ np ⎞ ⎟ B B T D ⎜ ⎟ ⎝ nm ⎠ So: Given VD , JB ,Twalls → cn Geometry: fB ,φ,φi ,V , Ag Gas (U + , Uexc ,σ + ( ) E ,σ (E ), M ) exc n * Can conclude p ( ) → ε ( ) → η ( ) NOTE: m = mi JB Te p Te u Te so real parameter is m , nm e ηn not JB . Then given also A e (magnetic geometry) and m → Co → ε p → ε B Summary Inputs: Geometry and Gas Operating Additional Magentic Field Properties Parameters Parameter fB , fc ,... U + , Uexc VD , JB φ,φ i , V , Ag σ + ( ) E E ,σ exc ( ) Te → ε m Tw → cn Ae M 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 7 of 8