正在加载图片...
T Lube et al. /Journal of the European Ceramic Society 27(2007)1449-1453 1453 ered alumina-zirconia composites. J. A. Ceram. Soc., 2002, 85, 1505- Attendingtostructuralconsiderationsanoptimalarchitecture6.Fett,T.andMunz,DStressIntensityFactorandWeightFunctions.com- is presented for ceramic multilayers. An overall increasing ten- putational Mechanics Publications, 1997 7. Bueckner, A novel principle for the computation of stress intensity factors. dency is observed in laminates with high compressive stresses ZAMM,1970.50.529-546. that can provoke a controlled fracture process. Results are pre-8. Fett, T and Munz, D, Determination of fracture toughness at high tem- sented for a system alumina/composite alumina-zirconia for peratures after subcritical crack extension. J Am. Ceram Soc., 1992, 75, which realistic effective toughness up to 13 MPam 2 can be 3133-3136. 9. sglavo. V. M. Larentis. L. and Green, D. J, Flaw-insensitive ion- exchanged glass. I. Theoretical aspects. J. Am. Ceram Soc., 2001, 84, 1827- Acknowledgments 10. Fett, T, Munz, D. and Yang, Y. Y, Applicability of the extended Petroski Achenbach weight function procedure to graded materials. Eng. Fract. Work supported in part by the European Communitys Mechan,2000,65,393-403 Human Potential Programme under contract HPRN-CT-2002- IL. Fett, T, Munz, D and Yang, Y Y, Direct adjustment procedure for weight 00203. Javier Pascual and Francis Chalvet acknowledge the functions of graded materials. Fatigue Fract. Eng. Mater. Struct, 2000, 23, 191-198. financial support provided through the European Communitys 12. Fett, T, Stress Intensity Factors and Weight Functions for the Edge Cracked Human Potential Programme under contract HPRN-CT-2002- late Calculated by the Boundary Collocation Method. Kfk 4791. Kem 00203 forschungszentrum, Karlsruhe, 1990 13. Oil, H. J. and Frechette, V. D, Stress distribution in multiphase system L. Composites with planar interfaces. J. Am. Ceram. Soc., 1967, 50, 542- References 14. Sergo, V, Lipkin, D. M, de Portu, G and Clarke, D.R. stresse 1. Chan, H. M, Layered ceramics: processing and mechanical behaviour. in alumina/zirconia laminates. J. Am. Ceram. Soc. 1997 Annu. Rev. Mater Sci. 1997.27.249-282 2. Lugovy, M, Slyunyayev, V, Orlovskaya, N, Blugan, G, Kuebler, J and 15. Tarlazzi, A, Roncari, E, Pinasco, P, Guicciardi, S, Melandri, C and de Lewis, M, Apparent fracture toughness of Si3 Ny-based laminates with Portu, G, Tribological behaviour of Al2O3/LrOz-ZrOz laminated compos- residual compressive or tensile stresses in surface layers Act. Mater, 2005 tes.Wear,2000.,24,2940. 53.289-296 16. Kubler. J, Procedure for Determining the Fracture Toughness of Ceram- 3. Blanks, K.S., Kristoffersson, A, Carlstrom, E. and Clegg, w.J., Crack cs Using the Single- Edge-V-Notched Beam (SEVNB) Method. GKsS deflection in ce laminates using porous interlayers. J. Eur. Ceran orschungszentrum on behalf of the European Structural Integrity Socie Soc,1998,18,1945-1951. 2000 4. Lakshminarayanan, R, Shetty, D. K and Cutler, R. A, Toughening of lay- 17. Damani, R, Gstrein, R. and Danzer, R, Critical notch-root radius effect composites with residual surface compression. J. Am. Ceran SENB-S fracture toughness testing. J. Eur: Ceram Soc., 1996, 16. 695- Soc,1996,79,7987 5. Moon, RJ. Hoffman, M, Hilden, J, Bowman, K.J. Trumble, K P and 18. Pascual. J. Chalvet, F. Lube, T. and de portu, G, R-curves in Rodel, J, Weight function analysis on the R-curve behavior of multilay- Al2O3-AlO/ZrO2 laminates. Key Eng Mater, 2005, 290, 214-221T. Lube et al. / Journal of the European Ceramic Society 27 (2007) 1449–1453 1453 4. Summary Attending to structural considerations an optimal architecture is presented for ceramic multilayers. An overall increasing ten￾dency is observed in laminates with high compressive stresses that can provoke a controlled fracture process. Results are pre￾sented for a system alumina/composite alumina–zirconia for which realistic effective toughness up to 13 MPa m1/2 can be expected. Acknowledgments Work supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002- 00203. Javier Pascual and Francis Chalvet acknowledge the financial support provided through the European Community’s Human Potential Programme under contract HPRN-CT-2002- 00203. References 1. Chan, H. M., Layered ceramics: processing and mechanical behaviour. Annu. Rev. Mater. Sci., 1997, 27, 249–282. 2. Lugovy, M., Slyunyayev, V., Orlovskaya, N., Blugan, G., Kuebler, J. and Lewis, M., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Act. Mater., 2005, 53, 289–296. 3. Blanks, K. S., Kristoffersson, A., Carlstrom, E. and Clegg, W. J., Crack ¨ deflection in ceramic laminates using porous interlayers. J. Eur. Ceram. Soc., 1998, 18, 1945–1951. 4. Lakshminarayanan, R., Shetty, D. K. and Cutler, R. A., Toughening of lay￾ered ceramic composites with residual surface compression. J. Am. Ceram. Soc., 1996, 79, 79–87. 5. Moon, R. J., Hoffman, M., Hilden, J., Bowman, K. J., Trumble, K. P. and Rodel, J., Weight function analysis on the ¨ R-curve behavior of multilay￾ered alumina–zirconia composites. J. Am. Ceram. Soc., 2002, 85, 1505– 1511. 6. Fett, T. and Munz, D., Stress Intensity Factor and Weight Functions. Com￾putational Mechanics Publications, 1997. 7. Bueckner, A novel principle for the computation of stress intensity factors. ZAMM, 1970, 50, 529–546. 8. Fett, T. and Munz, D., Determination of fracture toughness at high tem￾peratures after subcritical crack extension. J. Am. Ceram. Soc., 1992, 75, 3133–3136. 9. Sglavo, V. M., Larentis, L. and Green, D. J., Flaw-insensitive ion￾exchanged glass. I. Theoretical aspects. J. Am. Ceram. Soc., 2001, 84, 1827– 1831. 10. Fett, T., Munz, D. and Yang, Y. Y., Applicability of the extended Petroski￾Achenbach weight function procedure to graded materials. Eng. Fract. Mechan., 2000, 65, 393–403. 11. Fett, T., Munz, D. and Yang, Y. Y., Direct adjustment procedure for weight functions of graded materials. Fatigue Fract. Eng. Mater. Struct., 2000, 23, 191–198. 12. Fett, T., Stress Intensity Factors and Weight Functions for the Edge Cracked Plate Calculated by the Boundary Collocation Method. Kfk 4791. Kern￾forschungszentrum, Karlsruhe, 1990. 13. Oel, H. J. and Fr ¨ echette, V. D., Stress distribution in multiphase systems: ´ I. Composites with planar interfaces. J. Am. Ceram. Soc., 1967, 50, 542– 549. 14. Sergo, V., Lipkin, D. M., de Portu, G. and Clarke, D. R., Edge stresses in alumina/zirconia laminates. J. Am. Ceram. Soc., 1997, 80, 1633– 1638. 15. Tarlazzi, A., Roncari, E., Pinasco, P., Guicciardi, S., Melandri, C. and de Portu, G., Tribological behaviour of Al2O3/ZrO2–ZrO2 laminated compos￾ites. Wear, 2000, 24, 29–40. 16. Kubler, J., ¨ Procedure for Determining the Fracture Toughness of Ceram￾ics Using the Single-Edge-V-Notched Beam (SEVNB) Method. GKSS￾Forschungszentrum on behalf of the European Structural Integrity Society, 2000. 17. Damani, R., Gstrein, R. and Danzer, R., Critical notch-root radius effect in SENB-S fracture toughness testing. J. Eur. Ceram. Soc., 1996, 16, 695– 702. 18. Pascual, J., Chalvet, F., Lube, T. and de Portu, G., R-curves in Al2O3–Al2O3/ZrO2 laminates. Key Eng. Mater., 2005, 290, 214–221
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有