唐亚男等:分层胶结充填体力学特性及裂纹演化规律 ·1297 分析.综合分析可知,分层充填体试件主要表现为 及配比优化.工程科学学报,2020,42(7):829) 三种破坏模式:剪切破坏伴随次生剪切裂纹、张拉 [4]Li Y,Zhu J C,Wu Y S,et al.Research of Mechanics Properties of 破坏伴随次生张拉裂纹以及共轭剪切破坏伴随次 PVA Fiber Cementitions Composites.J Beijing Univ Technol, 2018.44(4):553 生拉剪破坏.保持中间层灰砂比不变,随中间层高 (李悦,朱金才,吴玉生,等.PVA纤维水泥基材料力学性能试验 度比增加,试件内部裂纹密度越大,试件也由单一 研究.北京工业大学学报,2018.44(4):553) 破坏模式向多种破坏模式并存过渡,保持中间层 [5] Xu W B,Hou Y B,Song W B,et al.Resistivity and thermal 高度比不变,当中间层灰砂比越小,试件内部裂纹 infrared precursors associated with cemented backfill mass./Cen 越集中于中间软弱层,随着灰砂比增加,软弱层破 South Univ,.2016,23(9:2329 坏逐渐向试件顶底段延伸、贯穿,然后导致整体失 [6] Xu W B,Tian X C,Qiu Y,et al.Experiment of the resistivity characteristic of cemented backfill mass during the whole 稳破坏 consolidation process.J China Univ Min Technol,2017,46(2): 4结论 265 (徐文彬,田喜春,邱字,等.胶结充填体固结全程电阻率特性试 (1)分层充填体单轴抗压强度与高度比呈指 验.中国矿业大学学报,2017,46(2):265) 数函数关系、与灰砂比呈二次多项式函数关系:弹 今 Cheng A P,Zhang Y S,Dai S Y,et al.Space-time evolution of 性模量与高度比及灰砂比均呈二次多项式函数关 acoustic emission parameters of cemented backfill and its fracture 系.分层充填体单轴抗压强度及弹性模量均随高 prediction under uniaxial compression.Rock Soil Mech,2019, 度比及灰砂比增大而增加,且两者对灰砂比敏感 40(8):2965 (程爱平,张玉山,戴顺意,等.单轴压缩胶结充填体声发射参数 度更高 时空演化规律及破裂预测.岩土力学,2019,40(8):2965) (2)保持高度比不变,灰砂比越小,裂纹演化 [8] Cheng A P,Dai S Y,Zhang Y S,et al.Study on size effect of 曲线拐点到来越早,表明裂纹快速增长点越快到 damage evolution of cemented backfill.Chin J Rock Mech Eng, 来,分层充填体越易发生破坏:保持灰砂比不变, 2019,38(Suppl1)3053 高度比越大,裂纹演化曲线拐点到来越早,表明裂 (程爱平,戴顺意,张玉山,等.胶结充填体损伤演化尺寸效应研 纹快速增长点越快到来,分层充填体越易发生破坏 究.岩石力学与工程学报,2019,38(增刊1):3053) [9] (3)分层充填体试件主要表现为三种破坏模 Li CH,Wei X M,Zhang L X,et al.Energy matching relationship between cemented backfill body and ore and determination of 式:剪切破坏、张拉破坏及共轭剪切破坏,且破坏 curing time.J Min Saf Eng,2017,34(6):1116 主要集中在中间软弱层;保持灰砂比不变,随高度 (李长洪,魏晓明,张立新,等.胶结充填体与矿石的能量匹配关 比增加,试件内部裂纹密度越大,试件由单一破坏 系及固化时间的确定,采矿与安全工程学报,2017,34(6): 模式向多种破坏模式并存过度:保持高度比不变, 1116) 当灰砂比减小,试件内部裂纹越向中间软弱层集 [10]Wei X M,Guo L J,Li C H,et al.Study of space variation law of 中,随着灰砂比增加,软弱层破坏逐渐向试件顶底 strength of high stage cemented backfill.Rock Soil Mech,2018, 39(Suppl 2):45 部延伸、贯穿 (魏晓明,郭利杰,李长洪,等.高阶段胶结充填体强度空间变化 规律研究.岩土力学,2018,39增刊2少45) 参考文献 [11]Cao S,Yilmaz E,Song W D.Dynamic response of cement-tailings [1]Liu G S.Required Strength Model of Cemented Backfill with matrix composites under SHPB compression load.Construction Research on Arching Mechanism Considering Backfill-Rock Building Mater,2018,186:892 Interaction[Dissertation].Beijing:University of Science and [12]Tan Y Y,Wang J,Song W D.et al.Experimental study on Technology Beijing,2017 mechanical properties of cemented tailings backfill under cycle (刘光生,充填体与围岩接触成拱作用机理及强度模型研究学 dynamic loading test.J Min Saf Eng,2019,36(1):184 位论文].北京:北京科技大学,2017) (谭玉叶,汪杰,宋卫东,等.循环冲击下胶结充填体动载力学特 [2]Chen X,Shi X Z,Zhou J,et al.Effect of overflow tailings 性试验研究.采矿与安全工程学报,2019,36(1):184) properties on cemented paste backfill.J Environ Manage,2019, [13]Cao S,Song W D.Effect of filling interval time on the mechanical 235:133 strength and ultrasonic properties of cemented coarse tailing [3]Yin S H,Liu J M,Chen W,et al.Optimization of the effect and backfill.Int J Miner Process,2017,166:62 formulation of different coarse aggregates on performance of the [14]Cao S,Song W D,Yilmaz E.Influence of structural factors on paste backfill condensation.Chin J Eng,2020,42(7):829 uniaxial compressive strength of cemented tailings backfill. (尹升华,刘家明,陈威,等.不同粗骨料对膏体凝结性能的影响 Construction Building Mater,2018,174:190分析. 综合分析可知,分层充填体试件主要表现为 三种破坏模式:剪切破坏伴随次生剪切裂纹、张拉 破坏伴随次生张拉裂纹以及共轭剪切破坏伴随次 生拉剪破坏. 保持中间层灰砂比不变,随中间层高 度比增加,试件内部裂纹密度越大,试件也由单一 破坏模式向多种破坏模式并存过渡. 保持中间层 高度比不变,当中间层灰砂比越小,试件内部裂纹 越集中于中间软弱层,随着灰砂比增加,软弱层破 坏逐渐向试件顶底段延伸、贯穿,然后导致整体失 稳破坏. 4 结论 (1)分层充填体单轴抗压强度与高度比呈指 数函数关系、与灰砂比呈二次多项式函数关系;弹 性模量与高度比及灰砂比均呈二次多项式函数关 系. 分层充填体单轴抗压强度及弹性模量均随高 度比及灰砂比增大而增加,且两者对灰砂比敏感 度更高. (2)保持高度比不变,灰砂比越小,裂纹演化 曲线拐点到来越早,表明裂纹快速增长点越快到 来,分层充填体越易发生破坏;保持灰砂比不变, 高度比越大,裂纹演化曲线拐点到来越早,表明裂 纹快速增长点越快到来,分层充填体越易发生破坏. (3)分层充填体试件主要表现为三种破坏模 式:剪切破坏、张拉破坏及共轭剪切破坏,且破坏 主要集中在中间软弱层;保持灰砂比不变,随高度 比增加,试件内部裂纹密度越大,试件由单一破坏 模式向多种破坏模式并存过度;保持高度比不变, 当灰砂比减小,试件内部裂纹越向中间软弱层集 中,随着灰砂比增加,软弱层破坏逐渐向试件顶底 部延伸、贯穿. 参 考 文 献 Liu G S. Required Strength Model of Cemented Backfill with Research on Arching Mechanism Considering Backfill-Rock Interaction[Dissertation]. Beijing: University of Science and Technology Beijing, 2017 (刘光生. 充填体与围岩接触成拱作用机理及强度模型研究[学 位论文]. 北京: 北京科技大学, 2017) [1] Chen X, Shi X Z, Zhou J, et al. Effect of overflow tailings properties on cemented paste backfill. J Environ Manage, 2019, 235: 133 [2] Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829 (尹升华, 刘家明, 陈威, 等. 不同粗骨料对膏体凝结性能的影响 [3] 及配比优化. 工程科学学报, 2020, 42(7):829) Li Y, Zhu J C, Wu Y S, et al. Research of Mechanics Properties of PVA Fiber Cementitions Composites. J Beijing Univ Technol, 2018, 44(4): 553 (李悦, 朱金才, 吴玉生, 等. PVA纤维水泥基材料力学性能试验 研究. 北京工业大学学报, 2018, 44(4):553) [4] Xu W B, Hou Y B, Song W B, et al. Resistivity and thermal infrared precursors associated with cemented backfill mass. J Cent South Univ, 2016, 23(9): 2329 [5] Xu W B, Tian X C, Qiu Y, et al. Experiment of the resistivity characteristic of cemented backfill mass during the whole consolidation process. J China Univ Min Technol, 2017, 46(2): 265 (徐文彬, 田喜春, 邱宇, 等. 胶结充填体固结全程电阻率特性试 验. 中国矿业大学学报, 2017, 46(2):265) [6] Cheng A P, Zhang Y S, Dai S Y, et al. Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression. Rock Soil Mech, 2019, 40(8): 2965 (程爱平, 张玉山, 戴顺意, 等. 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测. 岩土力学, 2019, 40(8):2965) [7] Cheng A P, Dai S Y, Zhang Y S, et al. Study on size effect of damage evolution of cemented backfill. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 3053 (程爱平, 戴顺意, 张玉山, 等. 胶结充填体损伤演化尺寸效应研 究. 岩石力学与工程学报, 2019, 38(增刊1): 3053) [8] Li C H, Wei X M, Zhang L X, et al. Energy matching relationship between cemented backfill body and ore and determination of curing time. J Min Saf Eng, 2017, 34(6): 1116 (李长洪, 魏晓明, 张立新, 等. 胶结充填体与矿石的能量匹配关 系及固化时间的确定. 采矿与安全工程学报, 2017, 34(6): 1116) [9] Wei X M, Guo L J, Li C H, et al. Study of space variation law of strength of high stage cemented backfill. Rock Soil Mech, 2018, 39(Suppl 2): 45 (魏晓明, 郭利杰, 李长洪, 等. 高阶段胶结充填体强度空间变化 规律研究. 岩土力学, 2018, 39(增刊2): 45) [10] Cao S, Yilmaz E, Song W D. Dynamic response of cement-tailings matrix composites under SHPB compression load. Construction Building Mater, 2018, 186: 892 [11] Tan Y Y, Wang J, Song W D, et al. Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test. J Min Saf Eng, 2019, 36(1): 184 (谭玉叶, 汪杰, 宋卫东, 等. 循环冲击下胶结充填体动载力学特 性试验研究. 采矿与安全工程学报, 2019, 36(1):184) [12] Cao S, Song W D. Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill. Int J Miner Process, 2017, 166: 62 [13] Cao S, Song W D, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Construction Building Mater, 2018, 174: 190 [14] 唐亚男等: 分层胶结充填体力学特性及裂纹演化规律 · 1297 ·