正在加载图片...
第1期 周桂英等:紫金山铜矿浸出过程黄铁矿的氧化行为 ,15. (3)研究表明,在紫金铜矿细菌浸出过程中,金 属的溶解速率与细菌的生物量有关,可考虑适当降 低溶液中细菌量或降低细菌活性,来抑制黄铁矿的 过量浸出,pH值亦是黄铁矿浸出的重要影响因素, pH值的高低影响细菌活性和矿物表面沉淀物铁矾 等的形成, (4)在细菌浸出黄铁矿的过程中,以游离菌把 Fe+氧化成Fe3+的间接作用为主,吸附菌的直接作 用对浸出过程有协同作用 图10T.∫菌在黄铁矿表面吸附的SEM照片 参考文献 Fig.I SEM image of adsorption on pyrite surface by T.f [1]Samposn M I,Phllips C V.Blake RC.Influence of the attach- ment of acidophilic bacteria during the oxidation of sulfides.Min- erEg2000,13:373 [2]Shrihari JJ M.Kumar R.Gandhi KS.Dissolution of particles of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans.Hydrometallurgy,1995,47:175 [3]Esprio R T,Ruiz P.Growth of free and attached Thiobacillus ferrooxidans in ore suspensions.Biotechnol Bioeng.1987.30: 586 [4]Grundwell F.The formation of biofilms of iron oxidizing bacteria on pyrite.Miner Eng.1996.9(10):1081 [5]Tong X.Theory and Practice of Mineral Bioleaching.Beijing: Metallurgy Industry Press.1997 (童雄·微生物浸矿的理论与实践、北京:冶金工业出版社, 图11黄铁矿表面被T,f菌浸蚀的SEM照片 1997) Fig-11 SEM image of leaching on pyrite surface by T.f [6]Solari J A.Huerta G.Escobar B.Interfacial phenomena affecting 在矿石表面附着细菌的溶矿过程中,附着菌与 the adhesion of Thiobacillus ferrooxidans to sulfide mineral sur- faces.Colloids Surf.1992.69:159 硫化矿物之间的ES层,在矿物溶解过程中具有重 [7]Shrihari JJ M.Kumar R.Gandhi K S.Role of cell attachment in 要作用:一方面是细菌和总体浸出液间化学物质交 leaching of chalcopyrite mineral by Thiobacillus ferrooxidans.Ap- 流的窗口:另一方面也是电子转移的通道1].溶 pl Microbiol Biotechnol,1991,36:278 液中保持高Fe3+与Fe2+浓度比,有利于提高EPs [8]van Loosdrecht M C M.Zehnder A J B.Engineering of bacterial 层中氧化还原电位,从而提高细菌的溶矿作用,游离 adhesion.Experimentia.1990,46:817 [9]Sand W.Gerke T.Hallmann R.et al.Sulfur chemistry,biofilm 菌的间接作用在硫化矿的浸溶过程中也起重要 and the (in)direct attack mechanism:A critical evaluation of bac- 作用, terial leaching Appl Microbiol Biotechnol.1995.43:961 [10]Ohumra N.Kitamura K.Saiki H.Selective adhesion of 3结论 Thiobacillus ferrooxidans to pyrite.Appl Environ Microbiol, 1993,59(12):4044 (1)黄铁矿的浸出主要受溶液中氧化还原电位 [11]Tribusch H.Direct versus indirect bioleaching.Hydrometal- 的影响,而氧化还原电位受溶液中[Fe3+]/[Fe+] lurgy,2001,59:177 比值所控制,溶液中的Fe3+浓度由细菌氧化Fe+而 [12]Rojas-Chapana J.Bartels CC.Polmann L.Cooperative leaching 得,因此足够的细菌浓度和细菌活性是控制氧化还 and chemotaxis of Thiobacilli studied with spherical sulfur/sul- fide substrates.Process Biochem,1998.33(3):239 原电位高低的重要因素 [13]Arredondo R.Gareia A.Jerez C A.Partial removal of (2)在细菌浸出混合矿的过程中,在有菌条件 lipopolysaccharide from Thiobcillus ferrooxidans affects its ad- 下,pH值为1.6时,细菌浸出混合矿初期,黄铁矿的 hesion to solids.Appl Eniron Microbiol.1994,60(8):2846 浸出率仅为5%~8%左右;浸出15d时,氧化还原 [14]Lyklema J,Norde W,van Loosdrecht M C M,et al.Adhesion 电位在500mV以上时,黄铁矿浸出率可达25% of bacteria to polystyrene surfaces.Colloids Suf.1989.39:175 以上图10 T.f 菌在黄铁矿表面吸附的 SEM 照片 Fig.1 SEM image of adsorption on pyrite surface by T.f 图11 黄铁矿表面被 T.f 菌浸蚀的 SEM 照片 Fig.11 SEM image of leaching on pyrite surface by T.f 在矿石表面附着细菌的溶矿过程中‚附着菌与 硫化矿物之间的 EPS 层‚在矿物溶解过程中具有重 要作用:一方面是细菌和总体浸出液间化学物质交 流的窗口;另一方面也是电子转移的通道[13-14].溶 液中保持高 Fe 3+ 与 Fe 2+ 浓度比‚有利于提高 EPS 层中氧化还原电位‚从而提高细菌的溶矿作用‚游离 菌的间接作用在硫化矿的浸溶过程中也起重要 作用. 3 结论 (1) 黄铁矿的浸出主要受溶液中氧化还原电位 的影响‚而氧化还原电位受溶液中 [Fe 3+ ]/[Fe 2+ ] 比值所控制‚溶液中的Fe 3+浓度由细菌氧化Fe 2+而 得‚因此足够的细菌浓度和细菌活性是控制氧化还 原电位高低的重要因素. (2) 在细菌浸出混合矿的过程中‚在有菌条件 下‚pH 值为1∙6时‚细菌浸出混合矿初期‚黄铁矿的 浸出率仅为5%~8%左右;浸出15d 时‚氧化还原 电位在500mV 以上时‚黄铁矿浸出率可达25% 以上. (3) 研究表明‚在紫金铜矿细菌浸出过程中‚金 属的溶解速率与细菌的生物量有关‚可考虑适当降 低溶液中细菌量或降低细菌活性‚来抑制黄铁矿的 过量浸出.pH 值亦是黄铁矿浸出的重要影响因素‚ pH 值的高低影响细菌活性和矿物表面沉淀物铁矾 等的形成. (4) 在细菌浸出黄铁矿的过程中‚以游离菌把 Fe 2+氧化成 Fe 3+的间接作用为主‚吸附菌的直接作 用对浸出过程有协同作用. 参 考 文 献 [1] Samposn M I‚Phllips C V‚Blake R C.Influence of the attach￾ment of acidophilic bacteria during the oxidation of sulfides.Min￾er Eng‚2000‚13:373 [2] Shrihari J J M‚Kumar R‚Gandhi K S.Dissolution of particles of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans.Hydrometallurgy‚1995‚47:175 [3] Esprjo R T‚Ruiz P.Growth of free and attached Thiobacillus ferrooxidans in ore suspensions.Biotechnol Bioeng‚1987‚30: 586 [4] Grundwell F.The formation of biofilms of iron-oxidizing bacteria on pyrite.Miner Eng‚1996‚9(10):1081 [5] Tong X.Theory and Practice of Mineral Bioleaching.Beijing: Metallurgy Industry Press‚1997 (童雄.微生物浸矿的理论与实践.北京:冶金工业出版社‚ 1997) [6] Solari J A‚Huerta G‚Escobar B.Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulfide mineral sur￾faces.Colloids Surf‚1992‚69:159 [7] Shrihari J J M‚Kumar R‚Gandhi K S.Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans.Ap￾pl Microbiol Biotechnol‚1991‚36:278 [8] van Loosdrecht M C M‚Zehnder A J B.Engineering of bacterial adhesion.Experimentia‚1990‚46:817 [9] Sand W‚Gerke T‚Hallmann R‚et al.Sulfur chemistry‚biofilm and the (in)direct attack mechanism:A critical evaluation of bac￾terial leaching.Appl Microbiol Biotechnol‚1995‚43:961 [10] Ohumra N‚ Kitamura K‚ Saiki H. Selective adhesion of Thiobacillus ferrooxidans to pyrite.Appl Environ Microbiol‚ 1993‚59(12):4044 [11] Tribusch H.Direct versus indirect bioleaching. Hydrometal￾lurgy‚2001‚59:177 [12] Rojas-Chapana J‚Bartels C C‚Polmann L.Cooperative leaching and chemotaxis of Thiobacilli studied with spherical sulfur/sul￾fide substrates.Process Biochem‚1998‚33(3):239 [13] Arredondo R‚ Gareia A‚ Jerez C A. Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its ad￾hesion to solids.Appl Environ Microbiol‚1994‚60(8):2846 [14] Lyklema J‚Norde W‚van Loosdrecht M C M‚et al.Adhesion of bacteria to polystyrene surfaces.Colloids Surf‚1989‚39:175 第1期 周桂英等: 紫金山铜矿浸出过程黄铁矿的氧化行为 ·15·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有