正在加载图片...
第7期 王洪江等:极端嗜热硫杆菌浸出黄铁矿 855· 1.5 ■C1:=2.85-0.19,=0.96 2011,33(4):395 口C2:=1,88r-0.06P=0.96 (王洪江,吴爱祥,罗飞侠,等.细菌脱硫抑制硫化矿自燃 ●C4:=1.81x,形=0.90 0 实验研究.北京科技大学学报,2011,33(4):395) ◆ [4]Wu A X,Wang H J,Wang Y M,et al.A Way to Control 0.9 Spontaneous Combustion of Sulfide Ores by Bioleaching 0 0 China Patent,CN1948523.2007-04-18 0.6 (吴爱祥,王洪江,王贻明,等.一种细菌浸出治理硫化矿 石自燃的方法:中国专利,CN1948523.2007-04-18) 0.3 [5]Ruan R M,Liu X Y,Zou G,et al.Industrial practice 0.0 of a distinct bioleaching system operated at low pH,high 0.0 0.2 0.4 0.6 0.8 ferric concentration,elevated temperature and low redox TFe浓度增加值/(molL-l) potential for secondary copper sulfide.Hydrometallurgy, 图6不同初始pH值条件下浸出富液中SO子及TFe浓度 2011,108(1/2):130 增加值及其数值拟合线 [6]Mousavi S M,Yaghmaei S,Vossoughi M,et al.The ef- fects of Fe(II)and Fe(III)concentration and initial pH on Fig.6 Increase in concentration of SO ions and TFe in microbial leaching of low-grade sphalerite ore in a column pregnant leaching solutions at variable initial pH values and reactor.Bioresour Technol,2008,99(8):2840 the corresponding numerical fittings [7]Xia J L,Yang Y,He H,et al.Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spec- 3 结论 troscopy.Hydrometallurgy,2010,100(3/4):129 (1)分离出一株新型的极端嗜热硫杆菌,最适 [8]Chan J W,Gao C J,Zhang Q X,et al.Leaching of nickel- molybdenum sulfide ore with Sulfolobus metallicus.Chin 生长温度为70℃,最适pH值为2.0.该菌种用于 JP1 ocess Eng.2009,9(2):257 浸出黄铁矿时能耐受pH值为0.58、总铁质量浓度 (陈家武,高从堦,张启修,等.硫化叶菌对镍钼硫化矿的 为38.9gL-1的高酸高铁环境,同时浸出电位维持 浸出作用.过程工程学报,2009,9(2):257) 在580640mV较低水平.当初始pH值为2时,浸 [9 Fomchenko N V,Muravyov M I,Kondrat'eva T F. Two-stage bacterial-chemical oxidation of refractory gold- 出28d后黄铁矿浸出率达到最高,为17.8%. bearing sulfidic concentrates.Hydrometallurgy,2010,101 (2)极端嗜热硫杆菌生长及浸矿存在较明显的 (1/2):28 迟缓期、对数期和稳定期.降低初始pH值对黄铁 [10]Chen B,Wei Y L,Jing S R,et al.Identification of a ther- moacidophilic sulfolobus sp.isolated from a hot spring in 矿的浸出影响较小,但对细菌生长影响明显:当初 Tengchong Rehai.Microbiology,2008,35(12):1868 始pH值≤1.5时,菌株到达稳定期的时间从16d (陈波,魏云林,井申荣,等。腾冲热海一株嗜酸热硫化叶 增至20d. 菌的分离与鉴定.微生物学通报,2008,35(12):1868) [11]He ZZ,Pen Q,Ma J,et al.Study on the thermophiles in (3)在低pH值环境中,高温和高铁浓度有利于 hot spring of Yunnan:VII.Extremely thermophilic bac- 黄钾铁矾沉淀的生成.pH值<0.9时,浸出后黄铁矿 teria belonging to the genus bacillus in acid-high temper- 表面出现疏松多孔的黄钾铁矾和少量单质硫沉淀, ature hot spring of the Tengchong.Acta Microbiol Sin. 但菌株仍能将大部分单质硫氧化,展现出极端嗜 1989,29(3):161 (和致中,彭谦,马俊,等.云南温泉高温菌的研究Ⅶ 热硫杆菌在高铁、高酸和高温环境中生物脱硫的可 腾冲酸性高温温泉中的极瑞嗜热性芽孢杆菌.微生物学 行性. 报,1989,29(3):161) [12]He H,Xia J L,Yang Y,et al.Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis. 参考文献 Hydrometallurgy,2009,99(1/2):45 [13 Petersen J,Dixon D G.Competitive bioleaching of pyrite [1]Mao D,Chen Y J.Characteristic overview and analysis of and chalcopyrite.Hydrometallurgy,2006,83(1-4):40 spontaneous combustion of sulfide ores.Ind Miner Pro- [14]Jiang L,Zhou H Y,Peng X T.Bio-oxidation of pyrite, cess,2008,37(1):34 chalcopyrite and pyrrhotite by Acidithiobacillus ferroori- (毛丹,陈沅江.硫化矿石堆氧化自燃全过程特征综述与分 dans.Chin Sci Bull,2007,52(15):1802 析.化工矿物与加工,2008,37(1):34) (蒋磊,周怀阳,彭晓形.氧化亚铁硫杆菌对黄铁矿、 [2]Yin S H,Wu A X,Wang H J.Laboratory investigation 黄铜矿和磁黄铁矿的生物氧化作用研究科学通报, on the effect of biodesulfurization process on the sulphide 2007,52(15):1802) ore self-heating /Proceedings of the 19th International [15]Wang C Q,Ma S F,Lu A H,et al.The formation condi. Biohydrometallurgy Symposium.Changsha,2011:688 tions of jarosite and its environmental significance.Acta [3]Wang H J,Wu A X,Luo F X,et al.Experimental study Petrol Mineral,2005,24(6):607) on inhibiting the spontaneous combustion of sulfide ores (王长秋,马生风,鲁安怀,等.黄钾铁矾的形成条件研究 by bacteria desulfurization.J Univ Sci Technol Beijing, 及其环境意义.岩石矿物学杂志,2005,24(6):607)第 7 期 王洪江等:极端嗜热硫杆菌浸出黄铁矿 855 ·· 图 6 不同初始 pH 值条件下浸出富液中 SO2− 4 及 TFe 浓度 增加值及其数值拟合线 Fig.6 Increase in concentration of SO2− 4 ions and TFe in pregnant leaching solutions at variable initial pH values and the corresponding numerical fittings 3 结论 (1) 分离出一株新型的极端嗜热硫杆菌,最适 生长温度为 70 ℃,最适 pH 值为 2.0. 该菌种用于 浸出黄铁矿时能耐受 pH 值为 0.58、总铁质量浓度 为 38.9 g·L −1 的高酸高铁环境,同时浸出电位维持 在 580∼640 mV 较低水平. 当初始 pH 值为 2 时,浸 出 28 d 后黄铁矿浸出率达到最高,为 17.8%. (2) 极端嗜热硫杆菌生长及浸矿存在较明显的 迟缓期、对数期和稳定期. 降低初始 pH 值对黄铁 矿的浸出影响较小,但对细菌生长影响明显;当初 始 pH 值 61.5 时,菌株到达稳定期的时间从 16 d 增至 20 d. (3) 在低 pH 值环境中,高温和高铁浓度有利于 黄钾铁矾沉淀的生成. pH 值 <0.9 时,浸出后黄铁矿 表面出现疏松多孔的黄钾铁矾和少量单质硫沉淀, 但菌株仍能将大部分单质硫氧化,展现出极端嗜 热硫杆菌在高铁、高酸和高温环境中生物脱硫的可 行性. 参 考 文 献 [1] Mao D, Chen Y J. Characteristic overview and analysis of spontaneous combustion of sulfide ores. Ind Miner Pro￾cess, 2008, 37(1): 34 (毛丹,陈沅江.硫化矿石堆氧化自燃全过程特征综述与分 析.化工矿物与加工,2008, 37(1): 34) [2] Yin S H, Wu A X, Wang H J. Laboratory investigation on the effect of biodesulfurization process on the sulphide ore self-heating // Proceedings of the 19th International Biohydrometallurgy Symposium. Changsha, 2011: 688 [3] Wang H J, Wu A X, Luo F X, et al. Experimental study on inhibiting the spontaneous combustion of sulfide ores by bacteria desulfurization. J Univ Sci Technol Beijing, 2011, 33(4): 395 (王洪江,吴爱祥,罗飞侠,等.细菌脱硫抑制硫化矿自燃 实验研究.北京科技大学学报,2011, 33(4): 395) [4] Wu A X, Wang H J, Wang Y M, et al. A Way to Control Spontaneous Combustion of Sulfide Ores by Bioleaching: China Patent, CN1948523. 2007-04-18 (吴爱祥,王洪江,王贻明,等. 一种细菌浸出治理硫化矿 石自燃的方法:中国专利,CN1948523. 2007-04-18) [5] Ruan R M, Liu X Y, Zou G, et al. Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy, 2011, 108(1/2): 130 [6] Mousavi S M, Yaghmaei S, Vossoughi M, et al. The ef￾fects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresour Technol, 2008, 99(8): 2840 [7] Xia J L, Yang Y, He H, et al. Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spec￾troscopy. Hydrometallurgy, 2010, 100(3/4): 129 [8] Chan J W, Gao C J, Zhang Q X, et al. Leaching of nickel￾molybdenum sulfide ore with Sulfolobus metallicus. Chin J Process Eng, 2009, 9(2): 257 (陈家武,高从堦,张启修,等.硫化叶菌对镍钼硫化矿的 浸出作用.过程工程学报,2009,9(2):257) [9] Fomchenko N V, Muravyov M I, Kondrat’eva T F. Two-stage bacterial-chemical oxidation of refractory gold￾bearing sulfidic concentrates. Hydrometallurgy, 2010, 101 (1/2): 28 [10] Chen B, Wei Y L, Jing S R, et al. Identification of a ther￾moacidophilic sulfolobus sp. isolated from a hot spring in Tengchong Rehai. Microbiology, 2008, 35(12): 1868 (陈波,魏云林,井申荣,等.腾冲热海一株嗜酸热硫化叶 菌的分离与鉴定.微生物学通报,2008,35(12):1868) [11] He Z Z, Pen Q, Ma J, et al. Study on the thermophiles in hot spring of Yunnan: Ⅶ. Extremely thermophilic bac￾teria belonging to the genus bacillus in acid-high temper￾ature hot spring of the Tengchong. Acta Microbiol Sin, 1989, 29(3): 161 (和致中,彭谦,马俊,等. 云南温泉高温菌的研究Ⅶ. 腾冲酸性高温温泉中的极端嗜热性芽孢杆菌.微生物学 报,1989,29(3):161) [12] He H, Xia J L, Yang Y, et al. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis. Hydrometallurgy, 2009, 99(1/2): 45 [13] Petersen J, Dixon D G. Competitive bioleaching of pyrite and chalcopyrite. Hydrometallurgy, 2006, 83(1-4): 40 [14] Jiang L, Zhou H Y, Peng X T. Bio-oxidation of pyrite, chalcopyrite and pyrrhotite by Acidithiobacillus ferrooxi￾dans. Chin Sci Bull, 2007, 52(15): 1802 (蒋磊, 周怀阳, 彭晓彤. 氧化亚铁硫杆菌对黄铁矿、 黄铜矿和磁黄铁矿的生物氧化作用研究 科学通报, 2007,52(15):1802) [15] Wang C Q, Ma S F, Lu A H, et al. The formation condi￾tions of jarosite and its environmental significance. Acta Petrol Mineral, 2005,24(6):607) (王长秋,马生凤,鲁安怀,等.黄钾铁矾的形成条件研究 及其环境意义.岩石矿物学杂志,2005,24(6):607)
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有