正在加载图片...
焦华喆等:剪切浓密床层孔隙网络模型与导水通道演化 ·995· 由25.73%增加至44.58%,增加的比率达到了 [10]Yang ZQ,Wang Y Q.Gao Q,et al.Test research on cemented 73.27%,说明剪切作用对孔隙间的连通更加密切, filling body strength of mixed filling aggregate in Jinchuan Nickel mine.J Henan Polytech Univ Nat Sci,2015,34(2):171 有利于水分的排出. (杨志强,王永前,高谦,等。金川镍矿混合充填集料胶结充 (4)本文提出球棍比的概念,实现了细观孔隙 填体强度试验研究河南理工大学学报(自然科学版), 结构变化的定量表征,剪切作用将球棍比由 2015,34(2):171) 48.91%增加至53.48%,提高的比率为9.34%,剪 [11]Liu L,Zhu C,Chen G L,et al.Erosion mechanism of sulfur- 切作用可以降低孔隙和喉道体积,且喉道体积下降 bearing tailings in micro-scale.I Xi'an Univ Sci Technol,2018 幅度更大 38(4):553 (刘浪,朱超,陈国龙,等.微观尺度下含硫尾砂胶结充填体 侵蚀机理.西安科技大学学报,2018,38(4):553) 参考文献 [12]Sun W.Hou K P,Yang Z Q.ct al.X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste [1]Wu A X,Yang Y,Cheng H Y,et al.Status and prospects of backfill pore structure under uniaxial compression.Construction paste technology in China.Chin J Eng,2018,40(5):517 Building Mater,2017,138:69 (吴爱祥,杨莹,程海勇,等。中国膏体技术发展现状与趋 [13]Yang B H,Wu A X,Miao XX.3D micropore structure evolu- 势.工程科学学报,2018,40(5):517) tion of ore particles based on image processing.Chin J Eng [2]Wang H J,Zhou X,Wu A X,et al.Mathematical model and fac- 2016.38(3):328 tors of paste thickener rake torque.Chin J Eng,2018,40(6): (杨保华,吴爱祥,缪秀秀.基于图像处理的矿石颗粒三维 673 微观孔隙结构演化.工程科学学报,2016,38(3):328) (王洪江,周旭,吴爱祥,等。膏体浓密机扭矩计算模型及其 [14]Sun W,Wu A X.Hou K P,et al.Application of X-Ray CT 影响因素.工程科学学报,2018.40(6):673) technology in the pore structure study of subsidence area backfill- [3]Guo LJ,Xu W Y,Shi C X.Application of the stockpile tailings ing body.Rock Soil Mech,2017,38(12):3635 cemented filling technology on abandoned cavity treatment.China (孙伟,吴爱祥,侯克鹏,等.基于X-Ray CT试验的塌陷区 Min Mag,2014,23(Suppl 2):194 回填体孔隙结构研究.岩土力学,2017,38(12):3635) (郭利杰,许文远,史采星.堆存尾砂胶结充填处理废弃采空 [15]Wu D,Fall M,Cai S J.Numerical modelling of thermally and 区的应用实践.中国矿业.2014,23(增刊2):194) hydraulically coupled processes in hydrating cemented tailings [4]Yilmaz T,Ercikdi B,Deveci H.Utilisation of construction and backfill columns.Int J Min Reclamation Environ,2014,28(3): demolition waste as cemented paste backfill material for under- 173 ground mine openings.JEnriron Manage,2018,222:250 [5]Shan Z Y,Su Y S.Study on the broken depth of floor failure on [16]Miao XX.Dual Pore-system Ore Aggregates Characterization and Leaching Behaviours Modelling Dissertation].Beijing:Univer- the mining face with paste filling.J Henan Polytech Unir Nat Sci, 2012,31(1):35 sity of Science and Technology Beijing,2018 (单智勇,苏勇松.膏体充填工作面底板破坏深度研究.河南 (缪秀秀.双尺度孔隙结构矿堆精细表征及浸矿多场耦合模 理工大学学报:自然科学版,2012,31(1):35) 型研究[学位论文].北京:北京科技大学,2018) [6]Khaldoun A,Ouadif L,Baba K,et al.Valorization of mining [17]Wang X M,Zhao J W.Optimal flocculating sedimentation pa- waste and tailings through paste backfilling solution,Imiter opera- rameters of unclassified tailings slurry.J Cent South Unig Sci tion,Morocco.Int Min Sci Technol,2016,26(3)511 Technol,2016,47(5):1675 [7]Yin S H,Shao Y J,Wu A X,et al.Association analysis of expan- (王新民,赵建文.全尾砂浆最佳絮凝沉降参数.中南大学 sion crack development characteristics and uniaxial compressive 学报(自然科学版),2016,47(5):1675) strength property of sulphide-containing backfill.Chin Eng, [18]Liu X J,Zhu H L,Liang L X.Digital rock physics of sandstone 2018,40(1):9 based on micro-CT technology.Chin J Geophys,2014,57(4): (尹升华,邵亚建,吴爱祥,等.含硫充填体膨胀裂隙发育特 1133 性与单轴抗压强度的关联分析.工程科学学报,2018,40 (刘向君,朱洪林,梁利喜.基于微CT技术的砂岩数字岩石 (1):9) 物理实验.地球物理学报,2014,57(4):1133) [8]Cao S.Song W D,Yilmaz E.Influence of structural factors on [19]Li Y L,Zhang Y F,Cong L,et al.Application of X-CT scan- uniaxial compressive strength of cemented tailings backfill.Constr ning technique in the characterization of micro pore structure of Build Mater,2018,174:190 tight sandstone reservoir:Taking the Fuyu Oil Layer in Daan Oil- [9]Cao S,Song W D,Xue G L,et al.Mechanical characteristics field as an Example.J Jilin Univ Earth Sci Ed,2016,46(2): variation of stratified cemented tailing backfilling and its failure 379 modes.J China Unir Min Technol,2016,45(4):717 (李易霖,张云峰,丛琳,等.X-CT扫描成像技术在致密砂 (曹帅,宋卫东,薛改利,等.分层尾砂胶结充填体力学特性 岩微观孔隙结构表征中的应用:以大安油田扶余油层为例 变化规律及破坏模式.中国矿业大学学报,2016,45(4): 吉林大学学报:地球科学版,2016,46(2):379) 717) [20]Song D Y,He KK,Ji X F,et al.Fine characterization of pores焦华喆等: 剪切浓密床层孔隙网络模型与导水通道演化 由 25郾 73% 增 加 至 44郾 58% , 增 加 的 比 率 达 到 了 73郾 27% ,说明剪切作用对孔隙间的连通更加密切, 有利于水分的排出. (4)本文提出球棍比的概念,实现了细观孔隙 结构 变 化 的 定 量 表 征, 剪 切 作 用 将 球 棍 比 由 48郾 91% 增加至 53郾 48% ,提高的比率为 9郾 34% ,剪 切作用可以降低孔隙和喉道体积,且喉道体积下降 幅度更大. 参 考 文 献 [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517 (吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋 势. 工程科学学报, 2018, 40(5): 517) [2] Wang H J, Zhou X, Wu A X, et al. Mathematical model and fac鄄 tors of paste thickener rake torque. Chin J Eng, 2018, 40 (6): 673 (王洪江, 周旭, 吴爱祥, 等. 膏体浓密机扭矩计算模型及其 影响因素. 工程科学学报, 2018, 40(6): 673) [3] Guo L J, Xu W Y, Shi C X. Application of the stockpile tailings cemented filling technology on abandoned cavity treatment. China Min Mag, 2014, 23(Suppl 2): 194 (郭利杰, 许文远, 史采星. 堆存尾砂胶结充填处理废弃采空 区的应用实践. 中国矿业, 2014, 23(增刊 2): 194) [4] Y覦lmaz T, Ercikdi B, Deveci H. Utilisation of construction and demolition waste as cemented paste backfill material for under鄄 ground mine openings. J Environ Manage, 2018, 222: 250 [5] Shan Z Y, Su Y S. Study on the broken depth of floor failure on the mining face with paste filling. J Henan Polytech Univ Nat Sci, 2012, 31(1): 35 (单智勇, 苏勇松. 膏体充填工作面底板破坏深度研究. 河南 理工大学学报:自然科学版, 2012, 31(1): 35) [6] Khaldoun A, Ouadif L, Baba K, et al. Valorization of mining waste and tailings through paste backfilling solution, Imiter opera鄄 tion, Morocco. Int J Min Sci Technol, 2016, 26(3): 511 [7] Yin S H, Shao Y J, Wu A X, et al. Association analysis of expan鄄 sion crack development characteristics and uniaxial compressive strength property of sulphide鄄containing backfill. Chin J Eng, 2018, 40(1): 9 (尹升华, 邵亚建, 吴爱祥, 等. 含硫充填体膨胀裂隙发育特 性与单轴抗压强度的关联分析. 工程科学学报, 2018, 40 (1): 9) [8] Cao S, Song W D, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr Build Mater, 2018, 174: 190 [9] Cao S, Song W D, Xue G L, et al. Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes. J China Univ Min Technol, 2016, 45(4): 717 (曹帅, 宋卫东, 薛改利, 等. 分层尾砂胶结充填体力学特性 变化规律及破坏模式. 中国矿业大学学报, 2016, 45 (4 ): 717) [10] Yang Z Q, Wang Y Q, Gao Q, et al. Test research on cemented filling body strength of mixed filling aggregate in Jinchuan Nickel mine. J Henan Polytech Univ Nat Sci, 2015, 34(2): 171 (杨志强, 王永前, 高谦, 等. 金川镍矿混合充填集料胶结充 填体强度试验研究. 河南理工大学学报 ( 自然科学版), 2015, 34(2): 171) [11] Liu L, Zhu C, Chen G L, et al. Erosion mechanism of sulfur鄄 bearing tailings in micro鄄scale. J Xi爷an Univ Sci Technol, 2018, 38(4): 553 (刘浪, 朱超, 陈国龙, 等. 微观尺度下含硫尾砂胶结充填体 侵蚀机理. 西安科技大学学报, 2018, 38(4): 553) [12] Sun W, Hou K P, Yang Z Q, et al. X鄄ray CT three鄄dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression. Construction Building Mater, 2017, 138: 69 [13] Yang B H, Wu A X, Miao X X. 3D micropore structure evolu鄄 tion of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328 (杨保华, 吴爱祥, 缪秀秀. 基于图像处理的矿石颗粒三维 微观孔隙结构演化. 工程科学学报, 2016, 38(3): 328) [14] Sun W, Wu A X, Hou K P, et al. Application of X鄄Ray CT technology in the pore structure study of subsidence area backfill鄄 ing body. Rock Soil Mech, 2017, 38(12): 3635 (孙伟, 吴爱祥, 侯克鹏, 等. 基于 X鄄Ray CT 试验的塌陷区 回填体孔隙结构研究. 岩土力学, 2017, 38(12): 3635) [15] Wu D, Fall M, Cai S J. Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns. Int J Min Reclamation Environ, 2014, 28(3): 173 [16] Miao X X. Dual Pore鄄system Ore Aggregates Characterization and Leaching Behaviours Modelling [Dissertation]. Beijing: Univer鄄 sity of Science and Technology Beijing, 2018 (缪秀秀. 双尺度孔隙结构矿堆精细表征及浸矿多场耦合模 型研究[学位论文]. 北京: 北京科技大学, 2018) [17] Wang X M, Zhao J W. Optimal flocculating sedimentation pa鄄 rameters of unclassified tailings slurry. J Cent South Univ Sci Technol, 2016, 47(5): 1675 (王新民, 赵建文. 全尾砂浆最佳絮凝沉降参数. 中南大学 学报(自然科学版), 2016, 47(5): 1675) [18] Liu X J, Zhu H L, Liang L X. Digital rock physics of sandstone based on micro鄄CT technology. Chin J Geophys, 2014, 57(4): 1133 (刘向君, 朱洪林, 梁利喜. 基于微 CT 技术的砂岩数字岩石 物理实验. 地球物理学报, 2014, 57(4): 1133) [19] Li Y L, Zhang Y F, Cong L, et al. Application of X鄄CT scan鄄 ning technique in the characterization of micro pore structure of tight sandstone reservoir: Taking the Fuyu Oil Layer in Daan Oil鄄 field as an Example. J Jilin Univ Earth Sci Ed, 2016, 46(2): 379 (李易霖, 张云峰, 丛琳, 等. X鄄CT 扫描成像技术在致密砂 岩微观孔隙结构表征中的应用: 以大安油田扶余油层为例. 吉林大学学报:地球科学版, 2016, 46(2): 379) [20] Song D Y, He K K, Ji X F, et al. Fine characterization of pores ·995·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有