1478 Part G Human-Centered and Life-Like Robotics vision,IEEE Trans.Syst.Man Cybern.19,825-831 62.87 N.Schweighofer,J.Spoelstra,M.A.Arbib, (1994) M.Kawato:Role of the cerebellum in reaching 62.72 J.Peters,P.van der Smagt:Searching a scalable quickly and accurately:Il.A neural model of the approach to cerebellar based control,Appl.Intell. intermediate cerebellum,Eur.J.Neurosci.10,95- 17.11-33(2002) 105(1998) 62.73 E.J.Nijhof,E.Kouwenhoven:Simulation of mul- 62.88 M.A.Arbib,N.Schweighofer,W.T.Thach:Modeling tijoint arm movements.In:Biomechanics and the cerebellum:from adaptation to coordination. Neural Control of Posture and Movement,ed.by In:Motor Control and Sensory-Motor Integra- J.M.Winters,P.E.Crago (Springer,New York 2002) tion:Issues and Directions,ed.by D.J.Glencross pp.363-372 J.P.Piek (North-Holland Elsevier Science,Amster- 62.74 M.Damsgaard,J.Rasmussen,S.T.Christensen:Nu- dam1995)pp.11-36 merical simulation and justification of antagonists 62.89 D.Wolpert,M.Kawato:Multiple paired forward in isometric squatting,Proceedings of the 12th Con- and inverse models for motor control,Neural Net- ference of the European Society of Biomechanics w0rks11,1317-1329(1998) ed.by P.J.Prendergast,T.C.Lee,A.J.Carr (Royal 62.90 P.van der Smagt,F.Groen,K.Schulten:Analy- Academy of Medicine in Ireland,2000) sis and control of a rubbertuator robot arm,Biol. 62.75 D.Bullock,J.Contreras-Vidal:How spinal neural Cybern.75(4),433-440(1996) networks reduce discrepancies between motor in- 62.91 R.Osu,H.Gomi:Multijoint muscle regulation tention and motor realization.In:Variability and mechanisms examined by measured human arm Motor Control,ed.by K.Newell,D.Corcos (Human stiffness and EMG signals,J.Neurophysiol.81(4), Kinetics,Champaign 1993)pp.183-221 1458-1468(1999) 62.76 S.Schaal,N.Schweighofer:Computational motor 62.92 G.Rizzolatti,L.Fadiga,V.Gallese,L.Fogassi:Pre- control in humans and robots,Curr.Opin.Neuro- motor cortex and the recognition of motor actions, biol.15,675-682(2005) Cogn.Brain Re5.3,131-141(1995) 62.77 P.van der Smagt,G.Hirzinger:The cerebel- 62.93 V.Gallese,L.Fadiga,L.Fogassi,G.Rizzolatti:Action lum as computed torque model,Fourth Int.Conf. recognition in the premotor cortex,Brain 119,593- Knowledge-Based Intell.Eng.Syst.Allied Technol. 609(1996) Vol.2(2000)pp.760-763 62.94 S.T.Grafton,M.A.Arbib,L.Fadiga,G.Rizzolatti: 62.78 M.Ebadzadeh,B.Tondu,C.Darlot:Computation of Localization of grasp representations in humans inverse functions in a model of cerebellar and re- by PET:2.Observation compared with imagination, flex pathways allow to control a mobile mechanica Exp.Brain Res..112,103-111(1996) segment,Neuroscience 133,29-49(2005) 62.95 G.Rizzolatti,L.Fadiga,M.Matelli,V.Betti- 62.79 M.Ito:The Cerebellum and Neural Control (Raven nardi,D.Perani,F.Fazio:Localization of grasp New York 1984) representations in humans by positron emission 62.80 P.van der Smagt:Cerebellar control of robot arms, tomography:1.Observation versus execution,Exp. Connect.Sci.10,301-320(1998) Brain Re5.11m,246-252(1996) 62.81 P.van der Smagt:Benchmarking cerebellar control, 62.96 L.Fadiga,G.Buccino,L.Craighero,L.Fogassi, Robot.Auton.Syst.32,237-251(2000) V.Gallese,G.Pavesi:Corticospinal excitabil- 62.82 C. Sabourin,0.Bruneau:Robustness of the ity is specifically modulated by motor imagery: dynamic walk of a biped robot subjected to a magnetic stimulation study,Neuropsychologia disturbing external forces by using CMAC neural 37,147-158(1999) networks,Robot.Auton.Syst.51,81-99(2005) 62.97 B.Voelkl,L.Huber:Imitation as faithful copying of 62.83 J.C.Houk,J.T.Buckingham,A.G.Barto:Models of a novel technique in marmoset monkeys,PLoS ONE the cerebellum and motor learning,Behav.Brain 27),e611(2007) Part 5ci.19(3).368-383(1996) 62.98 R.W.Byrne:Imitation as behavior parsing,Philos. 62.84 M.A.Arbib,C.C.Boylls,P.Dev:Neural models of Trans.R.Soc.London 358,529-536 (2003) spatial perception and the control of movement. 62.99 M.lacoboni,R.P.Woods,M.Brass,H.Bekkering, In:Kybernetik und Bionik/Cybernetics(Oldenbourg, J.C.Mazziotta,G.Rizzolatti:Cortical mechanisms of 1974)pp.216-231 human imitation,Science 286,2526-2528(1999) 62.85 N.Schweighofer:Computational Models of the 62.100 M.A.Arbib,G.Rizzolatti:Neural expectations: Cerebellum in the Adaptive Control of Movements a possible evolutionary path from manual skills to (University of Southern California,Los Angeles language,Commun.Cognition 29,393-424(1997) 1995),Ph.D.thesis 62.101 M.A.Arbib:From monkey-like action recognition 62.86 N.Schweighofer,M.A.Arbib,M.Kawato:Role of to human language:an evolutionary framework the cerebellum in reaching quickly and accurately: for neurolinguistics (with commentaries and au- I.A functional anatomical model of dynamics con- thor's response),Behav.Brain Sci.28,105-167 trol,Eur.J.Neurosci.10,86-94(1998) (2005)1478 Part G Human-Centered and Life-Like Robotics vision, IEEE Trans. Syst. Man Cybern. 19, 825–831 (1994) 62.72 J. Peters, P. van der Smagt: Searching a scalable approach to cerebellar based control, Appl. Intell. 17, 11–33 (2002) 62.73 E.J. Nijhof, E. Kouwenhoven: Simulation of multijoint arm movements. In: Biomechanics and Neural Control of Posture and Movement, ed. by J.M. Winters, P.E. Crago (Springer, New York 2002) pp. 363–372 62.74 M. Damsgaard, J. Rasmussen, S.T. Christensen: Numerical simulation and justification of antagonists in isometric squatting, Proceedings of the 12th Conference of the European Society of Biomechanics, ed. by P.J. Prendergast, T.C. Lee, A.J. Carr (Royal Academy of Medicine in Ireland, 2000) 62.75 D. Bullock, J. Contreras-Vidal: How spinal neural networks reduce discrepancies between motor intention and motor realization. In: Variability and Motor Control, ed. by K. Newell, D. Corcos (Human Kinetics, Champaign 1993) pp. 183–221 62.76 S. Schaal, N. Schweighofer: Computational motor control in humans and robots, Curr. Opin. Neurobiol. 15, 675–682 (2005) 62.77 P. van der Smagt, G. Hirzinger: The cerebellum as computed torque model, Fourth Int. Conf. Knowledge-Based Intell. Eng. Syst. Allied Technol., Vol. 2 (2000) pp. 760–763 62.78 M. Ebadzadeh, B. Tondu, C. Darlot: Computation of inverse functions in a model of cerebellar and re- flex pathways allow to control a mobile mechanical segment, Neuroscience 133, 29–49 (2005) 62.79 M. Ito: The Cerebellum and Neural Control (Raven, New York 1984) 62.80 P. van der Smagt: Cerebellar control of robot arms, Connect. Sci. 10, 301–320 (1998) 62.81 P. van der Smagt: Benchmarking cerebellar control, Robot. Auton. Syst. 32, 237–251 (2000) 62.82 C. Sabourin, O. Bruneau: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks, Robot. Auton. Syst. 51, 81–99 (2005) 62.83 J.C. Houk, J.T. Buckingham, A.G. Barto: Models of the cerebellum and motor learning, Behav. Brain Sci. 19(3), 368–383 (1996) 62.84 M.A. Arbib, C.C. Boylls, P. Dev: Neural models of spatial perception and the control of movement. In: Kybernetik und Bionik/Cybernetics (Oldenbourg, 1974) pp. 216–231 62.85 N. Schweighofer: Computational Models of the Cerebellum in the Adaptive Control of Movements (University of Southern California, Los Angeles 1995), Ph.D. thesis 62.86 N. Schweighofer, M.A. Arbib, M. Kawato: Role of the cerebellum in reaching quickly and accurately: I. A functional anatomical model of dynamics control, Eur. J. Neurosci. 10, 86–94 (1998) 62.87 N. Schweighofer, J. Spoelstra, M.A. Arbib, M. Kawato: Role of the cerebellum in reaching quickly and accurately: II. A neural model of the intermediate cerebellum, Eur. J. Neurosci. 10, 95– 105 (1998) 62.88 M.A. Arbib, N. Schweighofer, W.T. Thach: Modeling the cerebellum: from adaptation to coordination. In: Motor Control and Sensory-Motor Integration: Issues and Directions, ed. by D.J. Glencross, J.P. Piek (North-Holland Elsevier Science, Amsterdam 1995) pp. 11–36 62.89 D. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Networks 11, 1317–1329 (1998) 62.90 P. van der Smagt, F. Groen, K. Schulten: Analysis and control of a rubbertuator robot arm, Biol. Cybern. 75(4), 433–440 (1996) 62.91 R. Osu, H. Gomi: Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals, J. Neurophysiol. 81(4), 1458–1468 (1999) 62.92 G. Rizzolatti, L. Fadiga, V. Gallese, L. Fogassi: Premotor cortex and the recognition of motor actions, Cogn. Brain Res. 3, 131–141 (1995) 62.93 V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti: Action recognition in the premotor cortex, Brain 119, 593– 609 (1996) 62.94 S.T. Grafton, M.A. Arbib, L. Fadiga, G. Rizzolatti: Localization of grasp representations in humans by PET: 2. Observation compared with imagination, Exp. Brain Res. 112, 103–111 (1996) 62.95 G. Rizzolatti, L. Fadiga, M. Matelli, V. Bettinardi, D. Perani, F. Fazio: Localization of grasp representations in humans by positron emission tomography: 1. Observation versus execution, Exp. Brain Res. 111, 246–252 (1996) 62.96 L. Fadiga, G. Buccino, L. Craighero, L. Fogassi, V. Gallese, G. Pavesi: Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study, Neuropsychologia 37, 147–158 (1999) 62.97 B. Voelkl, L. Huber: Imitation as faithful copying of a novel technique in marmoset monkeys, PLoS ONE 2(7), e611 (2007) 62.98 R.W. Byrne: Imitation as behavior parsing, Philos. Trans. R. Soc. London 358, 529–536 (2003) 62.99 M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J.C. Mazziotta, G. Rizzolatti: Cortical mechanisms of human imitation, Science 286, 2526–2528 (1999) 62.100 M.A. Arbib, G. Rizzolatti: Neural expectations: a possible evolutionary path from manual skills to language, Commun. Cognition 29, 393–424 (1997) 62.101 M.A. Arbib: From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics (with commentaries and author’s response), Behav. Brain Sci. 28, 105–167 (2005) Part G 62