正在加载图片...
1478 Part G Human-Centered and Life-Like Robotics vision,IEEE Trans.Syst.Man Cybern.19,825-831 62.87 N.Schweighofer,J.Spoelstra,M.A.Arbib, (1994) M.Kawato:Role of the cerebellum in reaching 62.72 J.Peters,P.van der Smagt:Searching a scalable quickly and accurately:Il.A neural model of the approach to cerebellar based control,Appl.Intell. intermediate cerebellum,Eur.J.Neurosci.10,95- 17.11-33(2002) 105(1998) 62.73 E.J.Nijhof,E.Kouwenhoven:Simulation of mul- 62.88 M.A.Arbib,N.Schweighofer,W.T.Thach:Modeling tijoint arm movements.In:Biomechanics and the cerebellum:from adaptation to coordination. Neural Control of Posture and Movement,ed.by In:Motor Control and Sensory-Motor Integra- J.M.Winters,P.E.Crago (Springer,New York 2002) tion:Issues and Directions,ed.by D.J.Glencross pp.363-372 J.P.Piek (North-Holland Elsevier Science,Amster- 62.74 M.Damsgaard,J.Rasmussen,S.T.Christensen:Nu- dam1995)pp.11-36 merical simulation and justification of antagonists 62.89 D.Wolpert,M.Kawato:Multiple paired forward in isometric squatting,Proceedings of the 12th Con- and inverse models for motor control,Neural Net- ference of the European Society of Biomechanics w0rks11,1317-1329(1998) ed.by P.J.Prendergast,T.C.Lee,A.J.Carr (Royal 62.90 P.van der Smagt,F.Groen,K.Schulten:Analy- Academy of Medicine in Ireland,2000) sis and control of a rubbertuator robot arm,Biol. 62.75 D.Bullock,J.Contreras-Vidal:How spinal neural Cybern.75(4),433-440(1996) networks reduce discrepancies between motor in- 62.91 R.Osu,H.Gomi:Multijoint muscle regulation tention and motor realization.In:Variability and mechanisms examined by measured human arm Motor Control,ed.by K.Newell,D.Corcos (Human stiffness and EMG signals,J.Neurophysiol.81(4), Kinetics,Champaign 1993)pp.183-221 1458-1468(1999) 62.76 S.Schaal,N.Schweighofer:Computational motor 62.92 G.Rizzolatti,L.Fadiga,V.Gallese,L.Fogassi:Pre- control in humans and robots,Curr.Opin.Neuro- motor cortex and the recognition of motor actions, biol.15,675-682(2005) Cogn.Brain Re5.3,131-141(1995) 62.77 P.van der Smagt,G.Hirzinger:The cerebel- 62.93 V.Gallese,L.Fadiga,L.Fogassi,G.Rizzolatti:Action lum as computed torque model,Fourth Int.Conf. recognition in the premotor cortex,Brain 119,593- Knowledge-Based Intell.Eng.Syst.Allied Technol. 609(1996) Vol.2(2000)pp.760-763 62.94 S.T.Grafton,M.A.Arbib,L.Fadiga,G.Rizzolatti: 62.78 M.Ebadzadeh,B.Tondu,C.Darlot:Computation of Localization of grasp representations in humans inverse functions in a model of cerebellar and re- by PET:2.Observation compared with imagination, flex pathways allow to control a mobile mechanica Exp.Brain Res..112,103-111(1996) segment,Neuroscience 133,29-49(2005) 62.95 G.Rizzolatti,L.Fadiga,M.Matelli,V.Betti- 62.79 M.Ito:The Cerebellum and Neural Control (Raven nardi,D.Perani,F.Fazio:Localization of grasp New York 1984) representations in humans by positron emission 62.80 P.van der Smagt:Cerebellar control of robot arms, tomography:1.Observation versus execution,Exp. Connect.Sci.10,301-320(1998) Brain Re5.11m,246-252(1996) 62.81 P.van der Smagt:Benchmarking cerebellar control, 62.96 L.Fadiga,G.Buccino,L.Craighero,L.Fogassi, Robot.Auton.Syst.32,237-251(2000) V.Gallese,G.Pavesi:Corticospinal excitabil- 62.82 C. Sabourin,0.Bruneau:Robustness of the ity is specifically modulated by motor imagery: dynamic walk of a biped robot subjected to a magnetic stimulation study,Neuropsychologia disturbing external forces by using CMAC neural 37,147-158(1999) networks,Robot.Auton.Syst.51,81-99(2005) 62.97 B.Voelkl,L.Huber:Imitation as faithful copying of 62.83 J.C.Houk,J.T.Buckingham,A.G.Barto:Models of a novel technique in marmoset monkeys,PLoS ONE the cerebellum and motor learning,Behav.Brain 27),e611(2007) Part 5ci.19(3).368-383(1996) 62.98 R.W.Byrne:Imitation as behavior parsing,Philos. 62.84 M.A.Arbib,C.C.Boylls,P.Dev:Neural models of Trans.R.Soc.London 358,529-536 (2003) spatial perception and the control of movement. 62.99 M.lacoboni,R.P.Woods,M.Brass,H.Bekkering, In:Kybernetik und Bionik/Cybernetics(Oldenbourg, J.C.Mazziotta,G.Rizzolatti:Cortical mechanisms of 1974)pp.216-231 human imitation,Science 286,2526-2528(1999) 62.85 N.Schweighofer:Computational Models of the 62.100 M.A.Arbib,G.Rizzolatti:Neural expectations: Cerebellum in the Adaptive Control of Movements a possible evolutionary path from manual skills to (University of Southern California,Los Angeles language,Commun.Cognition 29,393-424(1997) 1995),Ph.D.thesis 62.101 M.A.Arbib:From monkey-like action recognition 62.86 N.Schweighofer,M.A.Arbib,M.Kawato:Role of to human language:an evolutionary framework the cerebellum in reaching quickly and accurately: for neurolinguistics (with commentaries and au- I.A functional anatomical model of dynamics con- thor's response),Behav.Brain Sci.28,105-167 trol,Eur.J.Neurosci.10,86-94(1998) (2005)1478 Part G Human-Centered and Life-Like Robotics vision, IEEE Trans. Syst. Man Cybern. 19, 825–831 (1994) 62.72 J. Peters, P. van der Smagt: Searching a scalable approach to cerebellar based control, Appl. Intell. 17, 11–33 (2002) 62.73 E.J. Nijhof, E. Kouwenhoven: Simulation of mul￾tijoint arm movements. In: Biomechanics and Neural Control of Posture and Movement, ed. by J.M. Winters, P.E. Crago (Springer, New York 2002) pp. 363–372 62.74 M. Damsgaard, J. Rasmussen, S.T. Christensen: Nu￾merical simulation and justification of antagonists in isometric squatting, Proceedings of the 12th Con￾ference of the European Society of Biomechanics, ed. by P.J. Prendergast, T.C. Lee, A.J. Carr (Royal Academy of Medicine in Ireland, 2000) 62.75 D. Bullock, J. Contreras-Vidal: How spinal neural networks reduce discrepancies between motor in￾tention and motor realization. In: Variability and Motor Control, ed. by K. Newell, D. Corcos (Human Kinetics, Champaign 1993) pp. 183–221 62.76 S. Schaal, N. Schweighofer: Computational motor control in humans and robots, Curr. Opin. Neuro￾biol. 15, 675–682 (2005) 62.77 P. van der Smagt, G. Hirzinger: The cerebel￾lum as computed torque model, Fourth Int. Conf. Knowledge-Based Intell. Eng. Syst. Allied Technol., Vol. 2 (2000) pp. 760–763 62.78 M. Ebadzadeh, B. Tondu, C. Darlot: Computation of inverse functions in a model of cerebellar and re- flex pathways allow to control a mobile mechanical segment, Neuroscience 133, 29–49 (2005) 62.79 M. Ito: The Cerebellum and Neural Control (Raven, New York 1984) 62.80 P. van der Smagt: Cerebellar control of robot arms, Connect. Sci. 10, 301–320 (1998) 62.81 P. van der Smagt: Benchmarking cerebellar control, Robot. Auton. Syst. 32, 237–251 (2000) 62.82 C. Sabourin, O. Bruneau: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks, Robot. Auton. Syst. 51, 81–99 (2005) 62.83 J.C. Houk, J.T. Buckingham, A.G. Barto: Models of the cerebellum and motor learning, Behav. Brain Sci. 19(3), 368–383 (1996) 62.84 M.A. Arbib, C.C. Boylls, P. Dev: Neural models of spatial perception and the control of movement. In: Kybernetik und Bionik/Cybernetics (Oldenbourg, 1974) pp. 216–231 62.85 N. Schweighofer: Computational Models of the Cerebellum in the Adaptive Control of Movements (University of Southern California, Los Angeles 1995), Ph.D. thesis 62.86 N. Schweighofer, M.A. Arbib, M. Kawato: Role of the cerebellum in reaching quickly and accurately: I. A functional anatomical model of dynamics con￾trol, Eur. J. Neurosci. 10, 86–94 (1998) 62.87 N. Schweighofer, J. Spoelstra, M.A. Arbib, M. Kawato: Role of the cerebellum in reaching quickly and accurately: II. A neural model of the intermediate cerebellum, Eur. J. Neurosci. 10, 95– 105 (1998) 62.88 M.A. Arbib, N. Schweighofer, W.T. Thach: Modeling the cerebellum: from adaptation to coordination. In: Motor Control and Sensory-Motor Integra￾tion: Issues and Directions, ed. by D.J. Glencross, J.P. Piek (North-Holland Elsevier Science, Amster￾dam 1995) pp. 11–36 62.89 D. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Net￾works 11, 1317–1329 (1998) 62.90 P. van der Smagt, F. Groen, K. Schulten: Analy￾sis and control of a rubbertuator robot arm, Biol. Cybern. 75(4), 433–440 (1996) 62.91 R. Osu, H. Gomi: Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals, J. Neurophysiol. 81(4), 1458–1468 (1999) 62.92 G. Rizzolatti, L. Fadiga, V. Gallese, L. Fogassi: Pre￾motor cortex and the recognition of motor actions, Cogn. Brain Res. 3, 131–141 (1995) 62.93 V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti: Action recognition in the premotor cortex, Brain 119, 593– 609 (1996) 62.94 S.T. Grafton, M.A. Arbib, L. Fadiga, G. Rizzolatti: Localization of grasp representations in humans by PET: 2. Observation compared with imagination, Exp. Brain Res. 112, 103–111 (1996) 62.95 G. Rizzolatti, L. Fadiga, M. Matelli, V. Betti￾nardi, D. Perani, F. Fazio: Localization of grasp representations in humans by positron emission tomography: 1. Observation versus execution, Exp. Brain Res. 111, 246–252 (1996) 62.96 L. Fadiga, G. Buccino, L. Craighero, L. Fogassi, V. Gallese, G. Pavesi: Corticospinal excitabil￾ity is specifically modulated by motor imagery: a magnetic stimulation study, Neuropsychologia 37, 147–158 (1999) 62.97 B. Voelkl, L. Huber: Imitation as faithful copying of a novel technique in marmoset monkeys, PLoS ONE 2(7), e611 (2007) 62.98 R.W. Byrne: Imitation as behavior parsing, Philos. Trans. R. Soc. London 358, 529–536 (2003) 62.99 M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J.C. Mazziotta, G. Rizzolatti: Cortical mechanisms of human imitation, Science 286, 2526–2528 (1999) 62.100 M.A. Arbib, G. Rizzolatti: Neural expectations: a possible evolutionary path from manual skills to language, Commun. Cognition 29, 393–424 (1997) 62.101 M.A. Arbib: From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics (with commentaries and au￾thor’s response), Behav. Brain Sci. 28, 105–167 (2005) Part G 62
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有