正在加载图片...
X迅 MMSm..A ogen curve o ined hy Asilent E5270 T n.T. Gaur.S.Jcon.M.LUsrey.M.S.Strano.J.A organic tr 12R10172 E.Nativ-Roth.O.Regev.R.Yerushalmi-Rozer nol Rapid Commu 141 .SungM.Park.U-H Choi.J.Huh.B. B.G.Min.C.H.Ahn on [15]M R.S.Me ean.S.R. The ele 【IgG.RDie N.G A.B.D nd2000 the OTFT R.H.Baughman,R. 03.2 in of a sw 4VP med wit油 F.Du.E F PDMS 184 by st the PDM .A.R.Meharabi,M.V.Bannon,J.L Bahr,Adv.Maer Published online: 阅8 moLe.20N44.2513 2 M.J. LS.MB时 Mo e.M.S Ma.R.H.Hause.RB.Weisman.R.ESmalley.Sclence 20022 anel Displays.Wiley.Hoboken.NI a.M.K.O .J.A.E.M n.F.A 60.156 [3I]H.E.Una i.A.Kanwal.A.D.Pasquier.M.Chhowalla ou.K. 24 www.advmat.de 2008 WILEY-VCH Verlag GmbH Co.KGaA.Weinhein Ad Mater0.1-6COMMUNICATION deposited onto a composite film spin cast on a glass substrate using thermal evaporation. The sheet resistance was calculated from the low bias slope of I–V curve obtained by Agilent E5270. The nanostructure of SWNTs with PS-b-P4VP was characterized by TEM, Hitachi H-600 and HRTEM, Jeol 2100 operated at 50 and 200 kV in bright field, respectively, and Atomic Force Microscope (AFM) (Nanoscope IVa Digital Instruments) in tapping mode. The samples for TEM were prepared by depositing droplets of suspension onto carbon-coated TEM grids, allowing the grids to dry without further staining. The electronic band characteristics of the composite films were observed by Near IR spectroscope (Model: Cary 5000) in the range of the wavelength from 400 to 2500 nm. The samples for the spectroscopy were prepared by drop casting of suspensions on quartz substrate. Organic Transistor Fabrication: An organic transistor with penta￾cene channel and SWNT/PS-b-P4VP composite source and drain electrodes was fabricated on a degenerately doped Si substrate with a 200 nm thermally grown oxide that can be used as a bottom gate. The source and drain of the composite films were prepared by spin coating and subsequent lift-off of a photo-resist film developed by conventional photolithography. Approximately 50-nm pentacene active layer was evaporated on the defined source and drain composite film using a metal shadow mask under pressure of 106 mTorr and a rate of 0.1–0.2 A˚ per second. The channel length (L) and width (W) were 100 and 2000mm, respectively. The electrical characteristics of the OTFT were measured in air at room temperature using Agilent E5270. Micro-Imprinting: Micro-imprinting of a SWNT/PS-b-P4VP com￾posite film was performed with a house-made microimprinting apparatus. [33] The elastomeric PDMS mold was fabricated by curing a PDMS precursor (Sylgard 184, Dow Corning Corp) on a prepatterned silicon master. The prepatterned photoresist master was prepared by standard photolithography, and the surface was fluorinated before casting the PDMS precursor on the master. After the PDMS precursor was cured at 40 8C for 12 h using vacuum oven, the mold was separated from the master. The ranges of temperature and pressure applied were 167 to 190 8C and 200 to 800 kPa, respectively. The samples were held at constant pressure and temperature for certain period of time and slowly cooled down to room temperature. The imprinting of the thin composite film with a PDMS mold was performed for 10 min at 175 8C with 200 kPa. Received: June 27, 2007 Revised: September 20, 2007 Published online: [1] R. G. Gordon, MRS Bull. 2000, 25, 52. [2] G. P. Crawford, Flexible Flat Panel Displays, Wiley, Hoboken, NJ 2005. [3] Y. Leterrier, L. Medico, F. Demarco, J.-A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, F. Atamny, Thin Solid Films 2004, 460, 156. [4] M. Kaempgen, G. S. Duesberg, S. Roth, Appl. Surf. Sci. 2005, 252, 425. [5] Z. Wu, Z. Chen, X. Du, J. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. Reynolds, D. Tanner, A. Hebard, A. Rinzler, Science 2004, 305, 1273. [6] J. Li, L. Hu, L. Wang, Y. Zhou, G. Gru¨ner, T. J. Marks, Nano Lett. 2006, 6, 2472. [7] Q. Cao, Z.-T. Zhu, M. G. Lemaitre, M.-G. Xia, M. Shim, J. A. Rogers, Appl. Phys. Lett. 2006, 88, 113511. [8] J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Appl. Phys. Lett. 2006, 88, 233503. [9] M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, J. A. Rogers, Nano Lett. 2004, 4, 1643. [10] M. J. O’Connell, P. Boul, M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. J. Kuper, K. D. Tour, K. D. Ausman, R. E. Smalley, Chem. Phys. Lett. 2001, 342, 265. [11] A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, J. R. Heath, Angew. Chem. Int. Ed. 2001, 40, 1721. [12] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett. 2002, 2, 25. [13] H. Shin, B. G. Min, W. Jeong, C. Park, Macromol. Rapid Commun. 2005, 26, 1451. [14] J. Sung, J. M. Park, U.-H. Choi, J. Huh, B. Jung, B. G. Min, C. H. Ahn, C. Park, Macromol. Rapid Commun. 2007, 28, 176. [15] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338. [16] G. R. Diekmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E. Munoz, I. H. Musselman, R. H. Baughman, R. K. Draper, J. Am. Chem. Soc. 2003, 125, 1770. [17] F. Du, J. E. Fischer, K. I. Winey, J. Polym. Sci. Part B 2003, 41, 3333. [18] M. B. Bryning, M. F. Islam, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2005, 17, 1186. [19] R. Ramasubramaniam, J. Chen, H. Liu, Appl. Phys. Lett. 2003, 83, 2928. [20] F. Du, R. Scogna, W. Zhou, S. Brand, J. Fisher, K. I. Winey, Macro￾molecules 2004, 37, 9048. [21] J. C. Grunlan, A. R. Meharabi, M. V. Bannon, J. L. Bahr, Adv. Mater. 2004, 16, 150. [22] J. C. Grunlan, L. Liu, Y. S. Kim, Nano Lett. 2006, 6, 911. [23] J. P. Spatz, S. Sheiko, M. Mo¨ller, Macromolecules 1996, 29, 3220. [24] M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293. [25] E. Menard, R. G. Nuzzo, J. A. Rogers, Appl. Phys. Lett. 2005, 86, 093507. [26] Q. Cao, Z.-T. Zhu, M. G. Lemaitre, M.-G. Xia, M. Shim, J. A. Rogers, Appl. Phys. Lett. 2006, 88, 113511. [27] L. Hu, D. S. Hecht, G. Gru¨ner, Nano Lett. 2004, 4, 2513. [28] J. C. Grunlan, L. Liu, Y. S. Kim, Nano Lett. 2006, 6, 911. [29] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 2002, 297, 593. [30] M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, R. C. Haddon, Nano Lett. 2002, 2, 155. [31] H. E. Unalan, G. Fanchini, A. Kanwal, A. D. Pasquier, M. Chhowalla, Nano Lett. 2006, 6, 677. [32] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 2001, 105, 8297. [33] B. K. Yoon, J. Huh, H.-C. Kim, J.-M. Hong, C. Park, Macromolecules 2006, 39, 901. 6 www.advmat.de  2008 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim Adv. Mater. 2008, 9999, 1–6
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有