Included observations:33 Y=C(1)+C(2)*N+C(3)*P+C(4)*1 Coefficient Std.Error t-Statistic Prob. C(1) 102192.4 12799.83 7.983891 0.0000 C(2) -9074.674 2052.674 -4.420904 0.0001 C(3) 0.354668 0.072681 4.879810 0.0000 C(4) 1.287923 0.543294 2.370584 0.0246 R-squared 0.618154 Mean dependent var 125634.6 Adjusted R-squared 0.578653 S.D.dependent var 22404.09 S.E.of regression 14542.78 Akaike info criterion 22.12079 Sum squared resid 6.13E+09 Schwarz criterion 22.30218 Log likelihood -360.9930 F-statistic 15.64894 Durbin-Watson stat 1.758193 Prob(F-statistic) 0.000003 (2)改变不同的回归元个数,得到的回归模型中的参数估计值是否一样?为什么? 尝试在上述回归模型中去掉一个竞争者个数,其他两个变量的斜率项系数估计结果发生 变化。这是因为模型控制的条件不同。Included observations: 33 Y=C(1)+C(2)*N+C(3)*P+C(4)*I Coefficient Std. Error t-Statistic Prob. C(1) 102192.4 12799.83 7.983891 0.0000 C(2) -9074.674 2052.674 -4.420904 0.0001 C(3) 0.354668 0.072681 4.879810 0.0000 C(4) 1.287923 0.543294 2.370584 0.0246 R-squared 0.618154 Mean dependent var 125634.6 Adjusted R-squared 0.578653 S.D. dependent var 22404.09 S.E. of regression 14542.78 Akaike info criterion 22.12079 Sum squared resid 6.13E+09 Schwarz criterion 22.30218 Log likelihood -360.9930 F-statistic 15.64894 Durbin-Watson stat 1.758193 Prob(F-statistic) 0.000003 (2)改变不同的回归元个数,得到的回归模型中的参数估计值是否一样?为什么? 尝试在上述回归模型中去掉一个竞争者个数,其他两个变量的斜率项系数估计结果发生 变化。这是因为模型控制的条件不同