正在加载图片...
CHIRAL RECOGNITION OF ETHERS BY NMR SPECTROSCOPY FHC-OCF2 CI FHC CF. 71 12 73 74 75 (R-enflurane) (R-isoflurane) (R-desflurane) Scheme 27.Structures of the ad three ur ted ethers(73-75)studied with cyclodextrins as CSA cH207 successi asuita ues con her NMR parameter which are not available from isotopic tially orientin talysis.Weinheim MR Here,a new field of research is ACKNOWLEDGMENTS 10.正 y.G.D supported by a fellowship granted to re t during thei ann E.edito many)D.B R tea 12. experim nts 13. R 14 rig V.Maver S.Sep on of ena for Xray se进 who suppli model compoun 2 ella vedova a (stanbul.Turk o oreto (La A2005:1068:1-30 nd) 17. Pietrusiewicz (Lublin. A200510831-57. K.M. 18.Na 19. LITERATURE CITED eak boson to the a-helix.Ber. gnition by mas 21. Chirality DOI 10.1002/chinries, CHA). Here, it is the mere shape of the chiral host rather than its polarity or ability to form binding interac￾tions which generates discrimination. Therefore, it is quite difficult to predict an experimental success if a suitable host system is to be selected from literature. Finally, some promising high-resolution solid-state NMR techniques are coming into the focus of chirality rec￾ognition studies.113,117–120 Here, further NMR parameters can be evaluated (e.g., crystal packing effects, chemical shift tensors, etc.), which are not available from isotopic liquid phase NMR. Both techniques, recording in partially orienting molec￾ular host systems and in the solid state, should be suc￾cessful in the enantiodifferentiation of ethers and many other unpolar compounds when isotropic liquid phase NMR spectroscopy fails. Here, a new field of research is opened for chiral discrimination. ACKNOWLEDGMENTS This work was supported by a fellowship granted to E.D.G. by the Deutscher Akademischer Austauschdienst (DAAD). H.D. is deeply indebted to S. Hameed, O. Kass￾ner, D. Magiera, S. Malik, J. Mattiza, C. Meyer, S. Moel￾ler, S. Rockitt, K. Wypchlo for their devoted cooperation in the Hannover dirhodium complex project during their PhD Theses. The author thanks D. Albert (Hannover, Germany), D. Baumann (Rostock, Germany), E. Hofer (Hannover, Germany), J. Jazwinski (Warsaw, Poland), and Z. Rozwadowski (Szczecin, Poland) for their skilled contri￾butions to so many sophisticated NMR experiments, G. To´ th, A. Simon, and T. Ga´ ti (Budapest, Hungary) for their invaluable help in variable-temperature NMR, R. Wartchow (Hannover, Germany) for X-ray diffraction measurements and, last but not least, to so many col￾leagues and friends who supplied model compounds: S. Antus (Debrecen, Hungary), T. Brotin (Lyon, France), J. Chojnowski (Lo´ dz, Poland), M. Cypryk (Lo´ dz, Poland), C. Della Ve´ dova (La Plata, Argentina), H. E. Di Loreto (La Plata, Argentina), I. Dogan (Istanbul, Turkey), J. Drabowicz (Lo´ dz, Poland), J. Frelek (Warsaw, Poland), J. Jios (La Plata, Argentina), K. Kiec-Konowicz (Krako´w, Poland), J. Ome￾lanczuk (Lo´ dz, Poland), K. M. Pietrusiewicz (Lublin, Poland), and B. Rys (Krako´ w, Poland). LITERATURE CITED 1. Janoschek R, editor. Chirality—from weak boson to the a-helix. Ber￾lin, Heidelberg: Springer Verlag; 1991. 2. Brunner H. Rechts oder Links in der Natur und Anderswo. Wein￾heim: Wiley-VCH; 1999 (in German). 3. Wagnie`re GH. On Chirality and universal asymmetry—reflections on image and mirror image. Zurich: Verlag Helvetica Chimica Acta and Weinheim: Wiley-VCH; 2007. 4. Eliel E, Wilen SH. Stereochemistry of organic compounds. New York: Wiley; 1994. 5. Eliel E, Wilen SH, Doyle MP. Basic organic stereochemistry. New York: Wiley-Interscience; 2001. 6. Helmchen G, Hoffmann RW, Mulzer J, Schaumann E, editors. Methods of organic chemistry (Houben-Weyl), stereoselective syn￾thesis, Vols. E 21a–E 21e. Stuttgart, New York: Georg Thieme Verlag; 1995. 7. Lin GO, Li Y-M, Chan ASC. Principles and applications of asymmet￾ric synthesis. Weinheim: Wiley-VCH; 2001. 8. Berkessel A, Gro¨ger H. Asymmetric organocatalysis. Weinheim: Wiley-VCH; 2004. 9. Schurig V. Determination of enantiomeric purity by direct methods. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E, editors. Methods of organic chemistry (Houben-Weyl), stereoselective syn￾thesis, Vol. E 21a, Part A, Chapter 3.1. Stuttgart, New York: Georg Thieme Verlag; 1995. p 147–224. 10. Lindner W, Uray, G. Determination of enantiomeric purity via for￾mation of diastereomers. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E, editors. Methods of organic chemistry (Houben￾Weyl), stereoselective synthesis, Vol. E 21a, Part A, Chapter 3.1. Stuttgart, New York: Georg Thieme Verlag; 1995. p 225– 292. 11. Duddeck H, Maas G, Welzel P. Determination of absolute and rela￾tive configuration. In: Helmchen G, Hoffmann RW, Mulzer J, Schau￾mann E, editors. Methods of organic chemistry (Houben-Weyl), stereoselective synthesis, Vol. E 21a, Part A, Chapter 4. Stuttgart, New York: Georg Thieme Verlag; 1995. p 293–535. 12. Marx S, Avnir D. The induction of chirality in sol–gel materials. Acc Chem Res 2007;40:768–776. 13. Maier NM, Lindner W. Stereoselective chromatographic methods for drug analysis. Methods Principles Med Chem 2006;33:189– 260. 14. Schurig V, Mayer S. Separation of enantiomers by open capillary electrochromatography on polysiloxane-bonded permethyl-b-cyclo￾dextrin. J Biochem Biophys Methods 2001;48:117–141. 15. Guebitz G, Schmid MG. Advances in chiral separation using capil￾lary electromigration techniques. Electrophoresis 2007;28:114–126. 16. Laemmerhofer M. Chiral separations by capillary electromigration techniques in nonaqueous media. II. Enantioselective nonaqueous capillary electrochromatography. J Chromatogr A 2005;1068:1–30. 17. Laemmerhofer M, Chiral separations by capillary electromigration techniques in nonaqueous media. II. Enantioselective nonaqueous capillary electrochromatography. J Chromatogr A 2005;1068:31–57. 18. Nakanishi K, Berova N, Woody RW, editors. Circular dichroism: principles and applications, 2nd ed. New York: Wiley-VCH; 2000. 19. Nafie LA, Dukor RK. Vibrational optical activity in chiral analysis. In: Busch KW, Busch MA, editors. Chiral analysis. Amsterdam: Elsevier; 2006. p 505–544; and references cited therein. 20. Di Tullio A, Reale S, De Angelis F. Molecular recognition by mass spectrometry. J Mass Spectrom 2005;40:845–865. 21. Rothchild R. NMR methods for determination of enantiomeric excess. Enantiomers 2000;5:457–471. Scheme 27. Structures of the hydrocarbons 71 and 72 as well as three fluroinated ethers (73–75) studied with cyclodextrins as CSA. CHIRAL RECOGNITION OF ETHERS BY NMR SPECTROSCOPY 65 Chirality DOI 10.1002/chir
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有