正在加载图片...
996 工程科学学报,第42卷,第8期 N (a) Strike=296.9/67.2°,Dip=49.2/53.1° Percentage of DC component=-55.8% T P Majority non-DC Percentage of component=15.8% T Strike=-78.2/201.2°,Dip=81.8/14.8° Strike=116.4 Dip=29.0 Percentage of DC component=45% P Majority DC Majority DC Percentage of DC component=-40% N Strike=l77.3°,Dip=54.6° N N 。一Sensor。 Strike=256.1°,Dip=17.7° Percentage of DC component=13.4% Majority non-DCN Majority non-DC (b) Percentage of DC component=-39.8% Percentage of DC component=39.1% Strike=-297.4°,Dip=70.1° Strike-94.3,Dip=22.7 Majority non-DC Majority non-DC oP N Percentage of DC compandnt=45.3 Strike=125.2/255.4°,Dp=25.8/72.7° Majority D Percentage of DC component=-87.3% Strike=17.2/144.5°,Dip=12.8/82.2° N oP Majority DC Majority DC Strike=320.9/136.1°,Dip=63.6/26.5° Percentagc of DC component=46.5% 图9震级最大的5个声发射事件震源机制解.()线荷载:(b)非线荷载 Fig.9 Focal mechanism solutions of the five AE events with the largest magnitude:(a)linear load;(b)non-linear load 表2线俳线荷载条件下震源机制对比 Table 2 Comparison of focal mechanisms under linear/non-linear loads Load Proportion of ISO Proportion of DC Proportion of CLVD Proportion of tensile Proportion of shear conditions component/% component/% component/% crack/% crack/% Main source type Linear load -40-60 -80-100 -60-80 47.76 24.79 Tensile and shear Non-linear load -40-50 -80-100 -80-80 48.92 23.09 Tensile and shear 损伤演化及震源机制的异同点,具体结论如下: 件异常活跃,声发射累计数及频率呈跳跃式增长 (1)线俳线荷载条件下,低孔隙率砂岩圆盘试 (2)圆盘所受荷载面积显著影响损伤累计的 样在相同加载速率下均为非中心起裂,两者不同阶 时间和释放能量的大小.非线荷载较线荷载条件, 段声发射事件发生在不同的位置.随着试样荷载 其圆盘所受荷载面积逐渐增大,增加了损伤累计 的增加,信噪比和平均震级均随之增大,裂纹破裂 的时间和声发射事件的剧烈程度,有效地控制了 释放的能量随之增大.特别是峰值附近,声发射事 裂纹的稳定扩展,使得最终贯通发生的脆性破裂损伤演化及震源机制的异同点,具体结论如下: (1)线/非线荷载条件下,低孔隙率砂岩圆盘试 样在相同加载速率下均为非中心起裂,两者不同阶 段声发射事件发生在不同的位置. 随着试样荷载 的增加,信噪比和平均震级均随之增大,裂纹破裂 释放的能量随之增大. 特别是峰值附近,声发射事 件异常活跃,声发射累计数及频率呈跳跃式增长. (2)圆盘所受荷载面积显著影响损伤累计的 时间和释放能量的大小. 非线荷载较线荷载条件, 其圆盘所受荷载面积逐渐增大,增加了损伤累计 的时间和声发射事件的剧烈程度,有效地控制了 裂纹的稳定扩展,使得最终贯通发生的脆性破裂 表 2 线/非线荷载条件下震源机制对比 Table 2 Comparison of focal mechanisms under linear/non-linear loads Load conditions Proportion of ISO component/% Proportion of DC component/% Proportion of CLVD component/% Proportion of tensile crack/% Proportion of shear crack/% Main source type Linear load −40−60 −80−100 −60−80 47.76 24.79 Tensile and shear Non-linear load −40−50 −80−100 −80−80 48.92 23.09 Tensile and shear N Strike=296.9/67.2°, Dip=49.2/53.1° Percentage of DC component=−55.8% N T T N T P P P N T P N T P N T P N T P N T P N T P N T P Majority DC Percentage of DC component=−40% Strike=177.3°, Dip=54.6° Strike=78.2/201.2°, Dip=81.8/14.8° Percentage of DC component=45% Majority non-DC Majority DC Percentage of component=15.8% Strike=116.4°, Dip=29.0° Majority non-DC Percentage of DC component=39.1% Strike=297.4°, Dip=70.1° Majority non-DC Strike=256.1°, Dip=17.7° Percentage of DC component=13.4% Majority non-DC Percentage of DC compondnt=−45.3% Strike=125.2/255.4°, Dip=25.8/72.7° Majority DC Majority DC Strike=320.9/136.1°, Dip=63.6/26.5° Percentagc of DC component=46.5% Percentage of DC component=−39.8% Strike=94.3°, Dip=22.7° Majority non-DC Majority DC Percentage of DC component=−87.3% Strike=17.2/144.5°, Dip=12.8/82.2° W N W N Sensor (a) (b) 图 9    震级最大的 5 个声发射事件震源机制解. (a)线荷载;(b)非线荷载 Fig.9    Focal mechanism solutions of the five AE events with the largest magnitude: (a) linear load; (b) non-linear load · 996 · 工程科学学报,第 42 卷,第 8 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有