正在加载图片...
·780· 工程科学学报,第41卷,第6期 (2)经过热处理后,体系内初生α相依旧存在, 8]Poorganji B,Yamaguchi M,Itsumi Y,et al.Microstructure evolu- 且趋于等轴化,亚稳定B相发生了转变,形成了弥 tion during deformation of a near-titanium alloy with different in- itial structures in the two-phase region.Scripta Mater,2009,61 散分布的平衡状态分解产物,即α、B相交互排列的 (4):419 片层状β转变组织.初生:相依旧大量弥散分布于 [9]He D.Zhu J C,Lai Z H,et al.An experimental study of deform- B相的晶界上,经过热处理后,处于亚稳状态的高温 ation mechanism and microstructure evolution during hot deforma- B相发生转变,析出的α片层较大,某些α片几乎 tion of Ti-6Al-2Zr-1Mo-1V alloy.Mater Des,2013,46:38 贯穿整个粗大的晶粒,同时由于缺少初生α相对晶 [10]Sun J Z,Li M Q,Li H.Interaction effect between alpha and be- 界迁移的阻碍作用,热处理使得B转变组织的晶粒 ta phases based on dynamic recrystallization of isothermally com- 变得更加粗大.当变形温度超过TC17钛合金对应 pressed Ti-5Al-2Sn-2Zr-4Mo-4Cr with basketweave micro- structure.J Alloys Compd,2017,692:403 的B相变温度时,淬火态TC17合金中初生α相完 [11]Srinivasan S G,Cahn J W,Jonsson H,et al.Excess energy of 全回溶到B相中,热处理使亚稳态的B相转化成片 grain-boundary trijunctions:an atomistic simulation study.Acta 状α相,其晶界α相对较粗大. Mater,1999,47(9):2821 (3)热变形可以改善TC17合金的两相取向均 [12]Li L,Luo J,Yan JJ,et al.Dynamic globularization and restora- 匀性,两相的织构组分增多,分布相对分散,但改善 tion mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during iso- thermal compression.J Alloys Compd,2015,622:174 效果α相明显好于B相.B相原本就存在取向上的 [13]Li H M,Li M Q,Luo J,et al.Microstructure and mechanical “宏区”,一次热变形对其取向的改善效果不佳.热 properties of heat-reated Ti-5Al-2Sn-2Zr-4Mo-4Cr.Trans 变形过程中温度影响了两相取向的均匀性,温度是 Nonferrous Met Soc China,2015,25(9):2893 通过影响了α→B相变程度,间接的影响了取向分 [14]Teixeira J DC,Appolaire B,Aeby-Gautier E,et al.Transforma- 布,故温度对两相的取向分布影响相反,α相织构极 tion kinetics and microstructures of Til7 titanium alloy during continuous cooling.Mater Sci Eng A,2007,448(12)135 密度值随温度增大而减小,而β相织构极密度值随 [15]Tarin P,Fernandez A L,Simon A G,et al.Transformations in 温度增大而增大. the Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17)alloy and mechanical and microstructural characteristics.Mater Sci Eng A,2006, 参考文献 438-440:364 16]Karthikeyan T,Dasgupta A,Khatirkar R,et al.Effect of cooling [Zhang K,Yang K V,Lim S,et al.Effect of the presence of mac- rate on transformation texture and variant selection during B rozoes on short crack propagation in forged two-phase titanium al- transformation in Ti-5Ta-1.8Nb alloy.Mater Sci Eng A,2010, loys.Int J Fatigue,2017,104:1 528(2):549 2]Semiatin S L,Bieler T R.The effect of alpha platelet thickness on [17]Xu J W,Zeng W D,Jia Z Q,et al.Microstructure coarsening plastic flow during hot working of T1-6Al-4V with a transformed behavior of Ti-17 alloy with equiaxed alpha during heat treat- microstructure.Acta Mater,2001,49(17):3565 ment.J Alloys Compd,2015,618:343 B3]Xu G D,Wang F E.Development and application on high-emper- [18]Park C H,Kim J H.Hyun Y T,et al.The origins of flow soften- ature Ti-based alloys.Chin J Rare Met,2008,32(6):774 ing during high-emperature deformation of a Ti-6Al-4V alloy (许国栋,王凤娥.高温钛合金的发展和应用.稀有金属, with a lamellar microstructure.J Alloys Compd,2014,582:126 2008,32(6):774) 19] Doherty R D,Hughes D A,Humphreys F J,et al.Current is- [4]Ma S J,Wu X R,Liu JZ,et al.Influence of microstructures on sues in recrystallization:a review.Master Sci Eng A,1997,238 mechanical properties for TC21 titanium alloy.J Aeron Mater, (2):219 2006,26(5):22 120]Mackenzie L W F,Pekguleryuz M 0.The recrystallization and (马少俊,吴学仁,刘建中,等.TC21钛合金的微观组织对力 texture of magnesium-zine-cerium alloy.Scripta Mater,2008,59 学性能的影响.航空材料学报,2006,26(5):22) (6):665 [5]Semiatin S L,Knisley S L,Fagin P N,et al.Microstructure evo- 21]Suwas S,Beausir B,Toth L S,et al.Texture evolution in com- lution during alpha-beta heat treatment of Ti-6Al-4V.Metall Ma- mercially pure titanium atter warm equal channel angular extru- ter Trans A,2003,34(10):2377 sion.Acta Mater,2011,59(3):1121 6]Bhattacharyya D.Viswanathan G B,Fraser H L.Crystallographic 22]Salib M,Teixeira J,Germain L,et al.Influence of transforma- and morphological relationships between B phase and the tion temperature on microtexture formation associated with a pre- Widmanstatten and allotriomorphic a phase at special B grain cipitation at B grain boundaries in a B metastable titanium alloy. boundaries in an a/B titanium alloy.Acta Mater,2007,55(20): Acta Mater,2013,61(10):3758 6765 [23]van Bohemen S M C,Kamp A,Petrov R H,et al.Nucleation Stanford N,Bate P S.Crystallographic variant selection in Ti- and variant selection of secondary a plates in a B Ti alloy.Acta 6Al-4V.Acta Mater,2004,52(17):5215 Mater,2008,56(20):5907工程科学学报,第 41 卷,第 6 期 ( 2) 经过热处理后,体系内初生 α 相依旧存在, 且趋于等轴化,亚稳定 β 相发生了转变,形成了弥 散分布的平衡状态分解产物,即 α、β 相交互排列的 片层状 β 转变组织. 初生 α 相依旧大量弥散分布于 β 相的晶界上,经过热处理后,处于亚稳状态的高温 β 相发生转变,析出的 α 片层较大,某些 α 片几乎 贯穿整个粗大的晶粒,同时由于缺少初生 α 相对晶 界迁移的阻碍作用,热处理使得 β 转变组织的晶粒 变得更加粗大. 当变形温度超过 TC17 钛合金对应 的 β 相变温度时,淬火态 TC17 合金中初生 α 相完 全回溶到 β 相中,热处理使亚稳态的 β 相转化成片 状 α 相,其晶界 α 相对较粗大. ( 3) 热变形可以改善 TC17 合金的两相取向均 匀性,两相的织构组分增多,分布相对分散,但改善 效果 α 相明显好于 β 相. β 相原本就存在取向上的 “宏区”,一次热变形对其取向的改善效果不佳. 热 变形过程中温度影响了两相取向的均匀性,温度是 通过影响了 α→β 相变程度,间接的影响了取向分 布,故温度对两相的取向分布影响相反,α 相织构极 密度值随温度增大而减小,而 β 相织构极密度值随 温度增大而增大. 参 考 文 献 [1] Zhang K,Yang K V,Lim S,et al. Effect of the presence of mac￾rozones on short crack propagation in forged two-phase titanium al￾loys. Int J Fatigue,2017,104: 1 [2] Semiatin S L,Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI--6Al--4V with a transformed microstructure. Acta Mater,2001,49( 17) : 3565 [3] Xu G D,Wang F E. Development and application on high-temper￾ature Ti-based alloys. Chin J Rare Met,2008,32( 6) : 774 ( 许国栋,王凤娥. 高温钛合金的发展和应用. 稀 有 金 属, 2008,32( 6) : 774) [4] Ma S J,Wu X R,Liu J Z,et al. Influence of microstructures on mechanical properties for TC21 titanium alloy. J Aeron Mater, 2006,26( 5) : 22 ( 马少俊,吴学仁,刘建中,等. TC21 钛合金的微观组织对力 学性能的影响. 航空材料学报,2006,26( 5) : 22) [5] Semiatin S L,Knisley S L,Fagin P N,et al. Microstructure evo￾lution during alpha-beta heat treatment of Ti--6Al--4V. Metall Ma￾ter Trans A,2003,34( 10) : 2377 [6] Bhattacharyya D,Viswanathan G B,Fraser H L. Crystallographic and morphological relationships between β phase and the Widmansttten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater,2007,55( 20) : 6765 [7] Stanford N,Bate P S. Crystallographic variant selection in Ti-- 6Al--4V. Acta Mater,2004,52( 17) : 5215 [8] Poorganji B,Yamaguchi M,Itsumi Y,et al. Microstructure evolu￾tion during deformation of a near-α titanium alloy with different in￾itial structures in the two-phase region. Scripta Mater,2009,61 ( 4) : 419 [9] He D,Zhu J C,Lai Z H,et al. An experimental study of deform￾ation mechanism and microstructure evolution during hot deforma￾tion of Ti--6Al--2Zr--1Mo--1V alloy. Mater Des,2013,46: 38 [10] Sun J Z,Li M Q,Li H. Interaction effect between alpha and be￾ta phases based on dynamic recrystallization of isothermally com￾pressed Ti--5Al--2Sn--2Zr--4Mo--4Cr with basketweave micro￾structure. J Alloys Compd,2017,692: 403 [11] Srinivasan S G,Cahn J W,Jónsson H,et al. Excess energy of grain-boundary trijunctions: an atomistic simulation study. Acta Mater,1999,47( 9) : 2821 [12] Li L,Luo J,Yan J J,et al. Dynamic globularization and restora￾tion mechanism of Ti--5Al--2Sn--2Zr--4Mo--4Cr alloy during iso￾thermal compression. J Alloys Compd,2015,622: 174 [13] Li H M,Li M Q,Luo J,et al. Microstructure and mechanical properties of heat-treated Ti--5Al--2Sn--2Zr--4Mo--4Cr. Trans Nonferrous Met Soc China,2015,25( 9) : 2893 [14] Teixeira J D C,Appolaire B,Aeby-Gautier E,et al. Transforma￾tion kinetics and microstructures of Ti17 titanium alloy during continuous cooling. Mater Sci Eng A,2007,448( 1-2) : 135 [15] Tarín P,Fernández A L,Simón A G,et al. Transformations in the Ti--5Al--2Sn--2Zr--4Mo--4Cr ( Ti--17) alloy and mechanical and microstructural characteristics. Mater Sci Eng A,2006, 438--440: 364 [16] Karthikeyan T,Dasgupta A,Khatirkar R,et al. Effect of cooling rate on transformation texture and variant selection during β→α transformation in Ti--5Ta--1. 8Nb alloy. Mater Sci Eng A,2010, 528( 2) : 549 [17] Xu J W,Zeng W D,Jia Z Q,et al. Microstructure coarsening behavior of Ti--17 alloy with equiaxed alpha during heat treat￾ment. J Alloys Compd,2015,618: 343 [18] Park C H,Kim J H,Hyun Y T,et al. The origins of flow soften￾ing during high-temperature deformation of a Ti--6Al--4V alloy with a lamellar microstructure. J Alloys Compd,2014,582: 126 [19] Doherty R D,Hughes D A,Humphreys F J,et al. Current is￾sues in recrystallization: a review. Master Sci Eng A,1997,238 ( 2) : 219 [20] Mackenzie L W F,Pekguleryuz M O. The recrystallization and texture of magnesium-zine-cerium alloy. Scripta Mater,2008,59 ( 6) : 665 [21] Suwas S,Beausir B,Toth L S,et al. Texture evolution in com￾mercially pure titanium atter warm equal channel angular extru￾sion. Acta Mater,2011,59( 3) : 1121 [22] Salib M,Teixeira J,Germain L,et al. Influence of transforma￾tion temperature on microtexture formation associated with α pre￾cipitation at β grain boundaries in a β metastable titanium alloy. Acta Mater,2013,61( 10) : 3758 [23] van Bohemen S M C,Kamp A,Petrov R H,et al. Nucleation and variant selection of secondary α plates in a β Ti alloy. Acta Mater,2008,56( 20) : 5907 · 087 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有