正在加载图片...
·1558 工程科学学报,第43卷,第11期 (2)微球堆叠岩心模型在结构上具有复杂的 2019,42(3):34 三维孔喉结构,同时立体光刻的逐层固化制造也 (光新军,豆宁辉,贾云鹏,等.纳米技术在石油工程中的应用前 增加了微球表面结构的复杂性,具有与地层岩性 景.钻采工艺,2019,42(3):34) [9] Hamida T,Babadagli T.Displacement of oil by different 相似的宏观孔喉结构与微观表面特征.此外多种 interfacial tension fluids under ultrasonic waves.Colloids Surf, 微球堆积方式中仅有简单立方堆积岩心模型可适 2008.316(1-3):176 应微立体光刻的逐层固化制造方式,避免岩心缺 [10]Ge D.Study on Stability of ASP Flooding Sludge and Ultrasonic- 陷的出现 Demulsification Oil Removal [Dissertation].Daqing:Northeast (3)本实验微立体光刻制造的五百微米微球 Petroleum University,2018 实体,在x-y平面上成型的直径平均误差为2.36%, (葛丹.三元复合驱油泥稳定性及超声一破乳洗油的研究学位 在x-z平面或y一z平面上成型的直径平均误差为 论文]大庆:东北石油大学,2018) [11]Liu W.Discussion on application of microbial oil recovery 0.13%. technology in oil exploitation.Chem Eng Des Commun,2017, (4)简单立方堆积的微球堆叠岩心模型孔隙 43(7):63 度由该模型的球心距与球半径之比定量控制,由 (刘卫.浅谈石油开采中微生物采油技术的应用.化工设计通讯, 模型的制造和应用分析得出该岩心模型可设计的 2017,43(7):63) 孔隙度范围为3.5%~47.6%.该设计范围足以满足 [12]Liu J,Wang C,Sun C Y.Application of microbial flooding in oil 大多数岩心的孔隙度设计需求.此外,根据孔隙度 fields.Chem Eng Des Commun,2019,45(1):33 设计的结论可设计非等径微球的非均质微球堆积 (刘杰,王超,孙朝阳.微生物驱油在油田的应用.化工设计通讯, 2019,45(1):33) 模型,并同样可采用微立体光刻成型 [13]de Araujo LL G C,Sodre L G P,Brasil L R,et al.Microbial 参考文献 enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota-Part I biosurfactant [1]Dai CL,Fang JC,Jiao B L,et al.Development of the research on characterization and oil displacement test.J Petrol Sci Eng,2019. EOR for carbonate fractured-vuggy reservoirs in China.J China 180:950 Univ Petrol Nat Sci,2018,42(6):67 [14]Nazina T,Sokolova D,Grouzdev D.et al.The potential (戴彩丽,方吉超,焦保雷,等.中国碳酸盐岩缝洞型油藏提高采 application of microorganisms for sustainable petroleum recovery 收率研究进展.中国石油大学学报(自然科学版),2018,42(6): from heavy oil reservoirs.Sustainabiliry,2020,12(1):15 67) [15]Hag B,Liu J S,Liu K Y,et al.The role of biodegradable [2]Zhu W Y,Yue M,Liu Y F,et al.Research progress on tight oil surfactant in microbial enhanced oil recovery.J Petrol Sci Eng, exploration in China.Chin J Eng,2019,41(9):1103 2020,189:106688 (朱维耀,岳明,刘昀枫,等.中国致密油藏开发理论研究进展 [16]Dong X Q,Ma X Y.Technical measures for three-stage oil 工程科学学报,2019,41(9):1103) recovery.Chem Eng Des Commun,2017,43(7):片42 [3]Samala R,Chaudhuri A,Vishnudas R,et al.Numerical analysis of (董喜庆,马晓燕.三次采油工艺技术措施.化工设计通讯,2017, viscous fingering and oil recovery by surfactant and polymer 43(7):42) flooding in five-spot setup for water and oil-wet reservoirs. [17]Xu L.Pore Network Model Construction of Sandstone Reservoir Geomech Geophys Geo-Energy Geo-Resour,2020,6(1):3 and Application [Dissertation].Chengdu:Southwest Petroleum [4]Ma K,Liontas R,Conn CA,et al.Visualization of improved University,2015 sweep with foam in heterogeneous porous media using (许丽.砂岩油藏孔隙网络模型构造及应用研究学位论文],成 microfluidics.Soft Matter,2012,8(41):10669 都:西南石油大学,2015) [5]Lv Q C,Li Z M,Li B F,et al.Study of nanoparticle-surfactant- [18]Sun Z.A method of extracting pore date of tight sandstone based stabilized foam as a fracturing fluid.Ind Eng Chem Res,2015, on 3D CT scanning image.J North China Inst Sci Technol,2020, 54(38):9468 17(1:6 [6]Olayiwola S O,Dejam M.A comprehensive review on interaction (孙泽.基于三维CT扫描图像的致密砂岩孔隙数据提取方法.华 of nanoparticles with low salinity water and surfactant for 北科技学院学报,2020,17(1):6) enhanced oil recovery in sandstone and carbonate reservoirs.Fuel, [19]Abgrall P,Gue A M.Lab-on-chip technologies:making a 2019,241:1045 microfluidic network and coupling it into a complete [7]Hendraningrat L,Li S D,Torsaeter O.A coreflood investigation of microsystem-a review.J Micromech Microeng,2007,17(5): nanofluid enhanced oil recovery.J Petrol Sci Eng,2013,111:128 R15 [8]Guang X J,Dou N H,Jia Y P,et al.Application prospects of [20]Xu K,Zhu P X,Huh C,et al.Microfluidic investigation of nanotechnology in petroleum engineering.Drill Prod Technol, nanoparticles'role in mobilizing trapped oil droplets in porous(2)微球堆叠岩心模型在结构上具有复杂的 三维孔喉结构,同时立体光刻的逐层固化制造也 增加了微球表面结构的复杂性,具有与地层岩性 相似的宏观孔喉结构与微观表面特征. 此外多种 微球堆积方式中仅有简单立方堆积岩心模型可适 应微立体光刻的逐层固化制造方式,避免岩心缺 陷的出现. (3)本实验微立体光刻制造的五百微米微球 实体,在 x−y 平面上成型的直径平均误差为 2.36%, 在 x−z 平面或 y−z 平面上成型的直径平均误差为 0.13%. (4)简单立方堆积的微球堆叠岩心模型孔隙 度由该模型的球心距与球半径之比定量控制,由 模型的制造和应用分析得出该岩心模型可设计的 孔隙度范围为 3.5%~47.6%,该设计范围足以满足 大多数岩心的孔隙度设计需求. 此外,根据孔隙度 设计的结论可设计非等径微球的非均质微球堆积 模型,并同样可采用微立体光刻成型. 参    考    文    献 Dai C L, Fang J C, Jiao B L, et al. Development of the research on EOR  for  carbonate  fractured-vuggy  reservoirs  in  China. J China Univ Petrol Nat Sci, 2018, 42(6): 67 (戴彩丽, 方吉超, 焦保雷, 等. 中国碳酸盐岩缝洞型油藏提高采 收率研究进展. 中国石油大学学报(自然科学版), 2018, 42(6): 67) [1] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103 (朱维耀, 岳明, 刘昀枫, 等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41(9):1103) [2] Samala R, Chaudhuri A, Vishnudas R, et al. Numerical analysis of viscous  fingering  and  oil  recovery  by  surfactant  and  polymer flooding  in  five-spot  setup  for  water  and  oil-wet  reservoirs. Geomech Geophys Geo-Energy Geo-Resour, 2020, 6(1): 3 [3] Ma  K,  Liontas  R,  Conn  C  A,  et  al.  Visualization  of  improved sweep  with  foam  in  heterogeneous  porous  media  using microfluidics. Soft Matter, 2012, 8(41): 10669 [4] Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant￾stabilized  foam  as  a  fracturing  fluid. Ind Eng Chem Res,  2015, 54(38): 9468 [5] Olayiwola S O, Dejam M. A comprehensive review on interaction of  nanoparticles  with  low  salinity  water  and  surfactant  for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045 [6] Hendraningrat L, Li S D, Torsæter O. A coreflood investigation of nanofluid enhanced oil recovery. J Petrol Sci Eng, 2013, 111: 128 [7] Guang  X  J,  Dou  N  H,  Jia  Y  P,  et  al.  Application  prospects  of nanotechnology  in  petroleum  engineering. Drill Prod Technol, [8] 2019, 42(3): 34 (光新军, 豆宁辉, 贾云鹏, 等. 纳米技术在石油工程中的应用前 景. 钻采工艺, 2019, 42(3):34) Hamida  T,  Babadagli  T.  Displacement  of  oil  by  different interfacial tension fluids under ultrasonic waves. Colloids Surf A, 2008, 316(1-3): 176 [9] Ge D. Study on Stability of ASP Flooding Sludge and Ultrasonic￾Demulsification Oil Removal [Dissertation].  Daqing:  Northeast Petroleum University, 2018 ( 葛丹. 三元复合驱油泥稳定性及超声—破乳洗油的研究[学位 论文]. 大庆: 东北石油大学, 2018) [10] Liu  W.  Discussion  on  application  of  microbial  oil  recovery technology  in  oil  exploitation. Chem Eng Des Commun,  2017, 43(7): 63 (刘卫. 浅谈石油开采中微生物采油技术的应用. 化工设计通讯, 2017, 43(7):63) [11] Liu J, Wang C, Sun C Y. Application of microbial flooding in oil fields. Chem Eng Des Commun, 2019, 45(1): 33 (刘杰, 王超, 孙朝阳. 微生物驱油在油田的应用. 化工设计通讯, 2019, 45(1):33) [12] de  Araujo  L  L  G  C,  Sodré  L  G  P,  Brasil  L  R,  et  al.  Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota - Part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng, 2019, 180: 950 [13] Nazina  T,  Sokolova  D,  Grouzdev  D,  et  al.  The  potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustainability, 2020, 12(1): 15 [14] Haq  B,  Liu  J  S,  Liu  K  Y,  et  al.  The  role  of  biodegradable surfactant  in  microbial  enhanced  oil  recovery. J Petrol Sci Eng, 2020, 189: 106688 [15] Dong  X  Q,  Ma  X  Y.  Technical  measures  for  three-stage  oil recovery. Chem Eng Des Commun, 2017, 43(7): 42 (董喜庆, 马晓燕. 三次采油工艺技术措施. 化工设计通讯, 2017, 43(7):42) [16] Xu  L. Pore Network Model Construction of Sandstone Reservoir and Application [Dissertation].  Chengdu:  Southwest  Petroleum University, 2015 ( 许丽. 砂岩油藏孔隙网络模型构造及应用研究[学位论文]. 成 都: 西南石油大学, 2015) [17] Sun Z. A method of extracting pore date of tight sandstone based on 3D CT scanning image. J North China Inst Sci Technol, 2020, 17(1): 6 (孙泽. 基于三维CT扫描图像的致密砂岩孔隙数据提取方法. 华 北科技学院学报, 2020, 17(1):6) [18] Abgrall  P,  Gue  A  M.  Lab-on-chip  technologies:  making  a microfluidic  network  and  coupling  it  into  a  complete microsystem —a  review. J Micromech Microeng,  2007,  17(5): R15 [19] Xu  K,  Zhu  P  X,  Huh  C,  et  al.  Microfluidic  investigation  of nanoparticles'  role  in  mobilizing  trapped  oil  droplets  in  porous [20] · 1558 · 工程科学学报,第 43 卷,第 11 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有